Amaranth protein–cacao pectin/phenolic extract complex

Main Article Content

Karla García-de la Rosa https://orcid.org/0009-0009-9209-5273
Landy Hernández-Rodríguez https://orcid.org/0000-0002-6408-3760
Consuelo Lobato-Calleros https://orcid.org/0000-0001-6668-3332
E. Jaime Vernon-Carter https://orcid.org/0000-0001-8367-1499
Juan Carlos Cuevas-Bernardino https://orcid.org/0000-0002-2830-8280

Keywords

Abstract

Agricultural waste can be successfully channeled into organic components with improved functional properties. The interactions between Amaranth protein (AP), cacao pod husk pectin (CP), in 2:1 and 5:1 weight ratios, and cacao shell/husk phenolic extract (PE) (0.0, 0.1, 0.5% w/v), were conducted at pH 3 to produce ternary complex coacervates (CC). CC displayed ζ-potential values approaching charge neutrality; FTIR spectra showed transposed peaks; SEM micrographs revealed heterogeneous and porous structures, which were distinct from those exhibited by the individual components. CC yield and antioxidant activity were higher as the AP:CP weight ratio and PE concentration increased. CC may be considered promising ingredients for developing novel food products with enhanced properties.

Abstract 37 | PDF Downloads 14 XML Downloads 1 HTML Downloads 0

References

Adegbaju, O. D., Otunola, G. A., & Afolayan, A. J. (2020). Effects of growth stage and seasons on the phytochemical content and antioxidant activities of crude extracts of Celosia argentea L. Heliyon, 6(6), e04086. https://doi.org/10.1016/j.heliyon.2020.e04086
AOAC. (1996). Official methods of analysis (16th ed.). AOAC International.
Banjare, I. S., Gandhi, K., Sao, K., & Sharma, R. (2019). Spray-dried whey protein concentrate-iron complex: Preparation and physicochemical characterization. Food Technology and Biotechnology, 57(3), 331–340. https://doi.org/10.17113/ftb.57.03.19.6228
Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172–184. https://doi.org/10.1007/s11694-021-01228-7
Cantele, C., Rojo-Poveda, O., Bertolino, M., Ghirardello, D., Cardenia, V., Barbosa-Pereira, L., & Zeppa, G. (2020). In vitro bioaccessibility and functional properties of phenolic compounds from enriched beverages based on cocoa bean shell. Foods, 9(6), Article 715. https://doi.org/10.3390/foods9060715
Castel, V., Andrich, O., Netto, F. M., Santiago, L. G., & Carrara, C. R. (2014). Total phenolic content and antioxidant activity of different streams resulting from pilot-plant processes to obtain Amaranthus mantegazzianus protein concentrates. Journal of Food Engineering, 122, 62–67. https://doi.org/10.1016/j.jfoodeng.2013.08.032
Chang, P. G., Gupta, R., Timilsena, Y. P., & Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 191, 58–66. https://doi.org/10.1016/j.jfoodeng.2016.07.008
Constantino, A. B. T., & Garcia-Rojas, E. E. (2022). Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocolloids, 133, 107956. https://doi.org/10.1016/j.foodhyd.2022.107956
Cortés-Viguri, V., Hernández-Rodríguez, L., Lobato-Calleros, C., Cuevas-Bernardino, J. C., Hernández-Rodríguez, B. E., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2021). Annatto (Bixa orellana L.), a potential novel starch source: Antioxidant, microstructural, functional, and digestibility properties. Journal of Food Measurement and Characterization, 16(1), 637–651. https://doi.org/10.1007/s11694-021-01228-7
de Souza, V. B., Thomazini, M., Echalar Barrientos, M. A., Nalin, C. M., Ferro-Furtado, R., Genovese, M. I., & Favaro-Trindade, C. S. (2018). Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocolloids, 77, 297–306. https://doi.org/10.1016/j.foodhyd.2017.09.040
Espinosa-Andrews, H., Báez-González, J. G., Cruz-Sosa, F., & Vernon-Carter, E. J. (2007). Gum arabic-chitosan complex coacervation. Biomacromolecules, 8(4), 1313–1318. https://doi.org/10.1021/bm0611634
Eze, F. N., Jayeoye, T. J., & Singh, S. (2022). Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken riceberry phenolic extract. Food Chemistry, 366, Article 130574. https://doi.org/10.1016/j.foodchem.2021.130574
Figueroa-González, J. J., Lobato-Calleros, C., Vernon-Carter, E. J., Aguirre-Mandujano, E., López-Monterrubio, D. I., & Alvarez-Ramirez, J. (2025). Physicochemical characterization and in vitro digestibility of modified amaranth protein/octenyl succinic anhydride-modified corn starch insoluble complexes. Acta Scientiarum Polonorum Technologia Alimentaria, 24(1), 47–65. https://doi.org/10.17306/J.AFS.001268
Gaber-Ahmed, G. H., Fernández-González, A., & Díaz García, M. E. (2020). Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids, 108, 105806. https://doi.org/10.1016/j.foodhyd.2020.105806
García-de la Rosa, K., Lobato-Calleros, C., Hernández-Rodríguez, L., & Aguirre-Mandujano, E. (2023). Rheological and structural properties of complex coacervates of Amaranthus hypochondriacus protein-citrus pectin. Revista Mexicana de Ingeniería Química, 22(1), 1–18. https://doi.org/10.24275/rmiq/Alim3003
Ghobadi, M., Koocheki, A., Varidi, M. J., & Varidi, M. (2020). Fabrication and characterization of Grass pea (Lathyrus sativus) protein isolate–Alyssum homolocarpum seed gum complex coacervate. Polymer Testing, 89, 106636. https://doi.org/10.1016/j.polymertesting.2020.106636
Hadidi, M., Aghababaei, F., Mahfouzi, M., Zhang, W., & McClements, D. J. (2024). Amaranth proteins: From extraction to application as nanoparticle-based delivery systems for bioactive compounds. Food Chemistry, 439, 138164. https://doi.org/10.1016/j.foodchem.2023.138164
Hashemi-Gahruie, H., Mirzapour, A., Ghiasi, F., Eskandari, M. H., Moosavi-Nasab, M., & Hosseini, S. M. H. (2022). Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT – Food Science and Technology, 153, 112422. https://doi.org/10.1016/j.lwt.2021.112422
Hernández-Rodríguez, L., Lobato-Calleros, C., Pimentel-González, D. J., & Vernon-Carter, E. J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids, 36, 181–188. https://doi.org/10.1016/j.foodhyd.2013.09.018
Huang, X., Huang, X., Gong, Y., Xiao, H., McClements, D. J., & Hu, K. (2016). Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Research International, 87, 1–9. https://doi.org/10.1016/j.foodres.2016.06.009
Hutomo, G. S., Rahim, A., & Kadir, S. (2016). Pectin isolation from dry pod husk cocoa with hydrochloride acid. International Journal of Current Microbiology and Applied Sciences, 5(11), 751–756. https://doi.org/10.20546/ijcmas.2016.511.086
Kashyap, P., Riar, C. S., & Jindal, N. (2022). Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT – Food Science and Technology, 153, 112570. https://doi.org/10.1016/j.lwt.2021.112570
Kim, M. J., Ju, H. K., Kim, Y., Yoo, S.-H., & Kim, Y.-S. (2016). Effects of amidation and/or methylesterification of pectin on aroma release at different calcium concentration. Food Hydrocolloids, 52, 343–349. https://doi.org/10.1016/j.foodhyd.2015.07.006
Koralegedara, I. D., Hettiarachchi, C. A., Prasantha, B. D. R., & Wimalasiri, K. M. S. (2020). Synthesis of nano-scale biopolymer particles from legume protein isolates and carrageenan. Food Technology and Biotechnology, 58(2), 214–222. https://doi.org/10.17113/ftb.58.02.20.6279
Kuck, L. S., & Noreña, C. P. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576. https://doi.org/10.1016/j.foodchem.2015.08.066
Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids, 101, 105556. https://doi.org/10.1016/j.foodhyd.2019.105556
Li, R., Zeng, Z., Fu, G., Wan, Y., Liu, C., & McClements, D. J. (2019). Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International, 120, 748–755. https://doi.org/10.1016/j.foodres.2018.11.034
Li, Y., Zhang, X., Sun, N., Wang, Y., & Lin, S. (2018). Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification. International Journal of Biological Macromolecules, 120(Pt A), 783–788. https://doi.org/10.1016/j.ijbiomac.2018.08.145
Malvern Instruments Limited. (2015). Zeta potential—An introduction in 30 minutes (Technical Note). https://www.research.colostate.edu/wp-content/uploads/2018/11/ZetaPotential-Introduction-in-30min-Malvern.pdf
Manzano, P., Hernández, J., Quijano-Avilés, M., Barragán, A., Chóez-Guaranda, I., Viteri, R., & Valle, O. (2017). Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant. Emirates Journal of Food and Agriculture, 29(1), 45–50. https://doi.org/10.9755/ejfa.2016-04-388
Muhoza, B., Xia, S., Wang, X., & Zhang, X. (2020). The protection effect of trehalose on the multinuclear microcapsules based on gelatin and high methyl pectin coacervate during freeze-drying. Food Hydrocolloids, 105, 105807. https://doi.org/10.1016/j.foodhyd.2021.107239
Murcia, K. S., & Castañeda, M. d. R. (2022). Evaluation of the content of total phenols and antioxidant capacity of ethanolic extracts of cocoa shell (Theobroma cacao L.). Revista de Investigación Agraria y Ambiental, 13(2), 53–65. https://doi.org/10.22490/21456453.4717
Nieto-Figueroa, K. H., Mendoza-Garcia, N. V., Gaytan-Martinez, M., Wall-Medrano, A., Guadalupe Flavia Loarca-Pina, M., & Campos-Vega, R. (2020). Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Research International, 137, 109725. https://doi.org/10.1016/j.foodres.2020.109725
Pan-Utai, W., & Iamtham, S. (2020). Enhanced microencapsulation of C-Phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology, 58(4), 423–432. https://doi.org/10.17113/ftb.58.04.20.6622
Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25–31. https://doi.org/10.1016/j.jfoodeng.2018.02.007
Ramírez-Santiago, C., Lobato-Calleros, C., Espinosa-Andrews, H., & Vernon-Carter, E. J. (2012). Viscoelastic properties and overall sensory acceptability of reduced-fat Petit-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Science & Technology, 92(4), 383–398. https://doi.org/10.1007/s13594-012-0077-2
Rosenberg, A., Solomonov, A., Cohen, H., Eliaz, D., Kellersztein, I., Brookstein, O., Kozell, A., Wang, L., Wagner, H. D., Daraio, C., & Shimanovich, U. (2024). From basic principles of protein–polysaccharide association to the rational design of thermally sensitive materials. ACS Applied Materials & Interfaces, 16(7), 9210–9223. https://doi.org/10.1021/acsami.3c12926
Salminen, H., & Weiss, J. (2014). Effect of pectin type on association and pH stability of whey protein-pectin complexes. Food Biophysics, 9(1), 29–38. https://doi.org/10.1007/s11483-013-9314-3
Shahidi, F., & Senadheera, R. (2019). Protein–phenol interactions. In L. Melton, F. Shahidi, & R. Senadheera (Eds.), Encyclopedia of food chemistry (pp. 532–538). Academic Press.
SIAP. (2023). Progress of sowing and harvesting, summary by state. Mexico: Agri-Food and Fisheries Information Service. https://nube.agricultura.gob.mx/cierre_agricola/
Trujillo-Ramírez, D., Lobato-Calleros, C., Román-Guerrero, A., Hernández-Rodríguez, L., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). Complexation with whey protein hydrolysate improves cacao pod husk pectin surface active and emulsifying properties. Reactive and Functional Polymers, 123, 61–69. https://doi.org/10.1016/j.reactfunctpolym.2017.12.011
Vargas, S. A., Delgado-Macuil, R. J., Ruiz-Espinosa, H., Rojas-Lopez, M., & Amador-Espejo, G. G. (2021). High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrasonics Sonochemistry, 70, 105340. https://doi.org/10.1016/j.ultsonch.2020.105340
Ventureira, J. L., Bolontrade, A. J., Speroni, F., David-Briand, E., Scilingo, A. A., Ropers, M.-H., Boury, F., Añón, M. C., & Anton, M. (2012). Interfacial and emulsifying properties of amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH. LWT - Food Science and Technology, 45(1), 1–7. https://doi.org/10.1016/j.lwt.2011.07.024
Vriesmann, L. C., Teófilo, R. F., & de Oliveira Petkowicz, C. L. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018
Wang, C., Sun, C., Lu, W., Gul, K., Mata, A., & Fang, Y. (2020). Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2955–2971. https://doi.org/10.1111/1541-4337.12621
Xu, Z., Hao, N., Li, L., Zhang, Y., Yu, L., Jiang, L., & Sui, X. (2019). Valorization of soy whey wastewater: How epigallocatechin-3-gallate regulates protein precipitation. ACS Sustainable Chemistry & Engineering, 7(18), 15504–15513. https://doi.org/10.1021/acssuschemeng.9b03208
Yao, W., Lei, Z., Fu, S., Zhong, J., & Liu, C. (2019). Effects of addition sequence on structure and function of β-lactoglobulin-EGCG-glucose ternary complexes. Food Science, 40, 41–47. https://doi.org/10.7506/spkx1002-6630-20180814-132.
Yan, S., Regestein, J. M., Qi, B., & Li, Y. (2023). Construction of protein-polysaccharide- and polyphenol-based conjugates as delivery systems. Critical Reviews in Food Science and Nutrition, 65(7), 1–19. https://doi.org/10.1080/10408398.2023.2293253
Yang, X., Yuan, K., Descallar, F. B. A., Li, A., Yang, X., & Yang, H. (2022). Gelation behaviors of some special plant-sourced pectins: A review inspired by examples from traditional gel foods in China. Trends in Food Science & Technology, 126, 26–40. https://doi.org/10.1016/j.tifs.2022.06.012
You, G., Liu, X. L., & Zhao, M. M. (2018). Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids, 74, 255–266. https://doi.org/10.1016/j.foodhyd.2017.08.004
Zhang, M., Zhang, H., Jia, L., Zhang, Y., Qin, R., Xu, S., & Mei, Y. (2024). Health benefits and mechanisms of theobromine. Journal of Functional Foods, 115, 106126. https://doi.org/10.1016/j.jff.2024.106126
Zhang, Q., Dong, H., Gao, J., Chen, L., & Vasanthan, T. (2020). Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Carbohydrate Polymers, 250, 116925. https://doi.org/10.1016/j.carbpol.2020.116925
Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., & Luo, Z. (2020). Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers, 242, 116388. https://doi.org/10.1016/j.carbpol.2020.116388
Zhao, M., Xia, X., Mao, J., Wang, C., Dawadi, M. B., Modarelli, D. A., & Zacharia, N. S. (2019). Composition and property tunable ternary coacervate: Branched polyethylenimine and a binary mixture of a strong and weak polyelectrolyte. Molecular Systems Design & Engineering, 4, 110-121. https://doi.org/10.1039/C8ME00069G