Royal jelly microencapsulation with a maltodextrin/gum Arabic binary blend by spray drying Process optimization and characterization of microcapsules

##plugins.themes.bootstrap3.article.main##

Latife Betül Gül

Keywords

Abstract

Royal jelly, defined as a “superfood,” is a functional food and nutraceutical due to its bioactive compounds, and therefore provides health and medical benefits. However, its sensitivity to spoilage, the need for cold conditions for storage, and its undesirable taste and aroma reduce its functional and commercial value. This study aimed to perform microencapsulation of royal jelly in protective matrices by spray drying to overcome these problems. The freshness indicator of the 10-HDA content of the royal jelly used in the study was 2.44%. It was also revealed that it was suitable for microencapsulation in terms of its other properties. The air inlet temperature significantly influenced all responses, while the coating material ratio influenced the encapsulation efficiency, antioxidant activity, and particle size. Also, feed pump speed affected solubility, moisture content, and water activity. According to desirability (0.81), the optimum spray-drying conditions to obtain the encapsulated royal jelly powder were air inlet temperature (145.81°C), coating material ratio (20%), and feed pump speed (9 mL/min) to obtain desired characteristics of spray-dried powder such as encapsulation efficiency (94.81%), water activity (0.204), total pheno-lic content (128.91 mg GAE/100 g), solubility (96.27%) and particle size (619.76 nm). Under optimized conditions, the predicted values were close to the experimental values. The physicochemical, bioactive, and morphological properties of optimized powders were acceptable.

Abstract 0 | Online PDF (Inglese) Downloads 0

Riferimenti bibliografici

Ahmad, S., Campos, M.G., Fratini, F., Altaye, S.Z. and Li, J., 2020. New insights into the biological and pharmaceutical properties of royal jelly. International Journal of Molecular Sciences. 21(2): 382. https://doi.org/10.3390/ijms21020382
Antinelli, J.-F., Zeggane, S., Davico, R., Rognone, C., Faucon, J.-P. and Lizzani, L., 2003. Evaluation of (E)-10-hydroxydec-2-enoic acid as a freshness parameter for royal jelly. Food Chemistry. 80(1): 85–89. https://doi.org/10.1016/S0308-8146(02)00243-1
AOAC, 1990. Official methods of analysis. 15th ed. Arlington, VA: Association of Official Analytical Chemist.
Arpagaus, C., Collenberg, A., Rutti, D., Assadpour, E. and Jafari, S.M., 2018. Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics. 546(1–2): 194–214. https://doi.org/10.1016/j.ijpharm.2018.05.037
Atalar, I. and Dervisoglu, M., 2015. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT - Food Science and Technology. 60(2): 751–757. https://doi.org/10.1016/j.lwt.2014.10.023
Atalar, I. and Yazici, F., 2018. Effect of different binders on reconstitution behaviors and physical, structural, and morphological properties of fluidized bed agglomerated yoghurt powder. Drying Technology. 37(13): 1656–1664. https://doi.org/10.1080/07373937.2018.1529038
Bagheri, R., Ariaii, P. and Motamedzadegan, A., 2020. Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. Journal of Food Measurement and Characterization. 15(2): 1395–1402. https://doi.org/10.1007/s11694-020-00738-0
Bahari, H., Taheri, S., Rashidmayvan, M., Jamshidi, S., Jazinaki, M.S. and Pahlavani, N., 2023. The effect of Royal jelly on liver enzymes and glycemic indices: A systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine. 77: 102974. https://doi.org/10.1016/j.ctim.2023.102974
Balasubramani, P., Palaniswamy, P.T., Visvanathan, R., Thirupathi, V., Subbarayan, A. and Prakash Maran, J., 2015. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules. 72: 210–217. https://doi.org/10.1016/j.ijbiomac.2014.08.011
Benković, M., Tušek, A.J., Belščak-Cvitanović, A., Lenart, A., Domian, E., Komes, D., et al. 2015. Artificial neural network modelling of changes in physical and chemical properties of cocoa powder mixtures during agglomeration. LWT - Food Science and Technology. 64(1): 140–148. https://doi.org/10.1016/j.lwt.2015.05.028
Beykaya, M., Inkaya, N.N., Yorulmaz Onder, E., Arici, Y.K. and Sahin, H., 2023. Comprehensive study of the physicochemical properties of royal jelly from various regions of Turkiye. Chemistry & Biodiversity. 20(9): e202300881. https://doi.org/10.1002/cbdv.202300881
Botezan, S., Baci, G.M., Bagameri, L., Pasca, C. and Dezmirean, D.S., 2023. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules. 28(3): 1510. https://doi.org/10.3390/molecules28031510
Buratti, S., Benedetti, S. and Cosio, M.S., 2007. Evaluation of the antioxidant power of honey, propolis and royal jelly by amperometric flow injection analysis. Talanta. 71(3): 1387–1392. https://doi.org/10.1016/j.talanta.2006.07.006
Carneiro, H.C.F., Tonon, R.V., Grosso, C.R.F. and Hubinger, M.D., 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering. 115(4): 443–451. https://doi.org/10.1016/j.jfoodeng.2012.03.033
Chen, C. and Chen, S.Y., 1995. Changes in protein components and storage stability of royal jelly under various conditions. Food Chemistry. 54(2): 195–200.
Collazo, N., Carpena, M., Nunez-Estevez, B., Otero, P., Simal-Gandara, J. and Prieto, M.A., 2021. Health promoting properties of bee royal jelly: Food of the queens. Nutrients. 13(2): 543. https://doi.org/10.3390/nu13020543
Cortés-Rojas, D.F., Souza, C.R.F. and Oliveira, W.P., 2015. Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design. 93: 366–376. https://doi.org/10.1016/j.cherd.2014.06.010
Desai, K.G.H. and Jin Park, H., 2005. Recent developments in microencapsulation of food ingredients. Drying Technology. 23(7): 1361–1394. https://doi.org/10.1081/drt-200063478
Dundar, A.N., Cinar, A., Altuntas, S., Ulubayram, N., Taner, G., Dagdelen, A.F., et al. 2022. The role of microencapsulation in maintaining biological activity of royal jelly: Comparison with biological activity and bioaccessibility of microencapsulated, fresh and lyophilized forms during storage. Journal of the Science of Food and Agriculture. 102(12): 5502–5511. https://doi.org/10.1002/jsfa.11905
Ecem Bayram, N., Çebi, N., Çelik, S., Gerçek, Y.C., Bayram, S., Tanuğur Samancı, A.E., et al. 2021. Turkish royal jelly: Amino acid, physicochemical, antioxidant, multi-elemental, antibacterial and fingerprint profiles by analytical techniques combined with chemometrics. Journal of Apicultural Research. 60(5): 751–764. https://doi.org/10.1080/00218839.2021.1889222
El-Seedi, H.R., Salama, S., El-Wahed, A.A.A., Guo, Z., Di Minno, A., Daglia, M., et al. 2024. Exploring the therapeutic potential of royal jelly in metabolic disorders and gastrointestinal diseases. Nutrients. 16(3): 393. https://doi.org/10.3390/nu16030393
Emir, M., 2020. Effect of harvesting period on chemical and bioactive properties of royal jelly from Turkey. European Food Science and Engineering. 1(1): 9–12. Available from: https://dergipark.org.tr/en/pub/efse/issue/54144/738407 [Accessed: 2 February, 2025]
Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A. and Omid, M., 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing. 90(4): 667–675. https://doi.org/10.1016/j.fbp.2012.04.006
Georgetti, S.R., Casagrande, R., Souza, C.R.F., Oliveira, W.P. and Fonseca, M.J.V., 2008. Spray drying of the soybean extract: Effects on chemical properties and antioxidant activity. LWT - Food Science and Technology. 41(8): 1521–1527. https://doi.org/10.1016/j.lwt.2007.09.001
Ghadimi-Garjan, R., Javadi, A., Jafarizadeh-Malmiri, H., Anarjan, N. and Mirzaei, H., 2023. Lyophilized royal jelly preparation in nanoscale and evaluation of its physicochemical properties and bactericidal activity. Food Science & Nutrition. 11(6): 3404–3413. https://doi.org/10.1002/fsn3.3330
Gil-Chávez, J., Padhi, S.S.P., Hartge, U., Heinrich, S. and Smirnova, I., 2020. Optimization of the spray-drying process for developing aquasolv lignin particles using response surface methodology. Advanced Powder Technology. 31(6): 2348–2356. https://doi.org/10.1016/j.apt.2020.03.027
Gonçalves, A., Estevinho, B.N. and Rocha, F., 2019. Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. Powder Technology. 345: 758–765. https://doi.org/10.1016/j.powtec.2019.01.062
González-Peña, M.A., Lozada-Ramírez, J.D. and Ortega-Regules, A.E., 2021. Antioxidant activities of spray-dried carotenoids using maltodextrin-Arabic gum as wall materials. Bulletin of the National Research Centre. 45(1): 58. https://doi.org/10.1186/s42269-021-00515-z
Gul, O. and Dervisoglu, M., 2020. Optimization of spray drying conditions for microencapsulation of Lactobacillus casei Shirota using response surface methodology. European Food Science and Engineering. 1(1): 1–8.
Gupta, S., Cox, S. and Abu-Ghannam, N., 2011. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT - Food Science and Technology. 44(5): 1266–1272. https://doi.org/10.1016/j.lwt.2010.12.022
Gül, O., Atalar, İ., Törnük, F. and Akgün, A., 2022. Process optimization of a cereal‐based fermented beverage (Boza) powder and investigating upscaling conditions. Journal of Food Process Engineering. 46(2): 14248. https://doi.org/10.1111/jfpe.14248
Huang, K., Yuan, Y. and Baojun, X., 2023. A critical review on the microencapsulation of bioactive compounds and their application. Food Reviews International. 39(5): 2594–2634. https://doi.org/10.1080/87559129.2021.1963978
Kausar, S.H. and More, V.R., 2019. Royal Jelly. Organoleptic characteristics and physicochemical properties. The Pharmaceutical and Chemical Journal. 6(2): 20–24.
Keskin, M., Özkök, A., Karahalil, F. and Kolayli, S., 2020. Arı sütü 10- Hidroksi-2-Dekanoik asit (10-HDA) miktarı ne olmalıdır? Mediterranean Agricultural Sciences. 33(3): 347–350. https://doi.org/10.29136/mediterranean.698926
Kolayli, S., Sahin, H., Can, Z., Yildiz, O., Malkoc, M. and Asadov, A., 2016. A member of complementary medicinal food: Anatolian royal jellies, their chemical compositions, and antioxidant properties. Evidence-based Complementary and Alternative Medicine. 21(4): 1–6. https://doi.org/10.1177/2156587215618832
Laureanti, E.J.G., Paiva, T.S., de Matos Jorge, L.M. and Jorge, R.M.M., 2023. Microencapsulation of bioactive compound extracts using maltodextrin and gum Arabic by spray and freeze-drying techniques. International Journal of Biological Macromolecules. 253(Pt 4): 126969. https://doi.org/10.1016/j.ijbiomac.2023.126969
Lejaniya, A.K.S. and Pui, L.P., 2022. Effects of spray-drying parameters on physicochemical properties of powdered fruits. Foods and Raw Materials. 10(2): 235–251. https://doi.org/10.21603/2308-4057-2022-2-533
Liu, J.R., Yang, Y.C., Shi, L.S. and Peng, C.C., 2008. Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of Agricultural and Food Chemistry. 56(23): 11447–11452.
Maghsoudlou, A., Mahoonak, A.S., Mohebodini, H. and Toldra, F., 2019. Royal jelly: Chemistry, storage and bioactivities. Journal of Apicultural Science. 63(1): 17–40. https://doi.org/10.2478/jas-2019-0007
Manickavasagan, A., Thangavel, K., Dev, S.R.S., Delfiya, D.S.A., Nambi, E., Orsat, V., et al. 2015. Physicochemical characteristics of date powder produced in a pilot-scale spray dryer. Drying Technology. 33(9): 1114–1123. https://doi.org/10.1080/07373937.2015.1014045
Martinello, M. and Mutinelli, F., 2021. Antioxidant activity in bee products: A review. Antioxidants (Basel). 10(1): 71. https://doi.org/10.3390/antiox10010071
Mehran, M., Masoum, S. and Memarzadeh, M., 2020. Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products. 154: 112694. https://doi.org/10.1016/j.indcrop.2020.112694
Millinia, B.L., Mashithah, D., Nawatila, R. and Kartini, K., 2024. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of maltodextrin and trehalose matrix on selected physicochemical properties and antioxidant activities of spray-dried powder. Future Foods. 9: 100300. https://doi.org/10.1016/j.fufo.2024.100300
Mishra, P., Mishra, S. and Mahanta, C.L., 2014. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing. 92(3): 252-258. https://doi.org/10.1016/j.fbp.2013.08.003
Mokaya, H.O., Njeru, L.K. and Lattorff, H.M.G., 2020. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. Food Bioscience. 37(12): 100733. https://doi.org/10.1016/j.fbio.2020.100733
Moraru, D., Alexa, E., Cocan, I., Obiștioiu, D., Radulov, I., Hulea, A., et al. 2023. Chemical composition, antioxidant, antimicrobial and antiinflamatory activity of some bee products. Preprints. 20230707874. https://doi.org/10.20944/preprints202307.0874.v1
Moraru, D., Alexa, E., Cocan, I., Obiștioiu, D., Radulov, I., Simiz, E., et al. 2024. Chemical characterization and antioxidant activity of Apilarnil, royal jelly, and Propolis collected in Banat Region, Romania. Applied Sciences. 14(3): 1242. https://doi.org/10.3390/app14031242
Mousavi Kalajahi, S.E. and Ghandiha, S., 2022. Optimization of spray drying parameters for encapsulation of Nettle (Urtica dioica L.) extract. LWT. 158: 113149. https://doi.org/10.1016/j.lwt.2022.113149
Murrieta-Pazos, I., Gaiani, C., Galet, L., Cuq, B., Desobry, S. and Scher, J., 2011. Comparative study of particle structure evolution during water sorption: Skim and whole milk powders. Colloids and Surfaces B: Biointerfaces. 87(1): 1–10. https://doi.org/10.1016/j.colsurfb.2011.05.001
Nguyen, C.T., Nguyen Di, K., Phan, H.C., Kha, T.C. and Nguyen, H.C., 2024. Microencapsulation of noni fruit extract using gum Arabic and maltodextrin—Optimization, stability and efficiency. International Journal of Biological Macromolecules. 269(Pt 2): 132217. https://doi.org/10.1016/j.ijbiomac.2024.132217
Nguyen, Q.-D., Dang, T.-T., Nguyen, T.-V.-L., Nguyen, T.-T.-D. and Nguyen, N.-N., 2022. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of different carriers on selected physicochemical properties and antioxidant activities of spray-dried and freeze-dried powder. International Journal of Food Properties. 25(1): 359–374. https://doi.org/10.1080/10942912.2022.2044846
Nuzzo, M., Millqvist-Fureby, A., Sloth, J. and Bergenstahl, B., 2015. Surface composition and morphology of particles dried individually and by spray drying. Drying Technology. 33(6): 757–767. https://doi.org/10.1080/07373937.2014.990566
Ozkok, D. and Silici, S., 2017. Antioxidant activities of honeybee products and their mixtures. Food Science and Biotechnology. 26(1): 201–206. https://doi.org/10.1007/s10068-017-0027-0
Pant, K., Thakur, M., Chopra, H.K. and Nanda, V., 2022. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT. 155: 112956. https://doi.org/10.1016/j.lwt.2021.112956
Patil, V., Chauhan, A.K. and Singh, R.P., 2014. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology. 253: 230–236. https://doi.org/10.1016/j.powtec.2013.11.033
Pavel, C.I., Mărghitaş, L.A., Dezmirean, D.S., Tomoş, L.I., Bonta, V., Şapcaliu, A., et al. 2014. Comparison between local and commercial royal jelly—Use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter. Journal of Apicultural Research. 53(1): 116–123. https://doi.org/10.3896/ibra.1.53.1.12
Pombo, J.C.P., de Medeiros, H. and Pena, R.D.S., 2020. Optimization of the spray drying process for developing cupuassu powder. Journal of Food Science and Technology. 57(12): 4501–4513. https://doi.org/10.1007/s13197-020-04487-2
Ribeiro, A.M., Shahgol, M., Estevinho, B.N. and Rocha, F., 2020. Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum Arabic, starch and maltodextrin. Food Hydrocolloids. 108(2): 106029. https://doi.org/10.1016/j.foodhyd.2020.106029
Sablania, V. and Bosco, S.J.D., 2018. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technology. 335: 35–41. https://doi.org/10.1016/j.powtec.2018.05.009
Sagona, S., Coppola, F., Giannaccini, G., Betti, L., Palego, L., Tafi, E., et al. 2022. Impact of different storage temperature on the enzymatic activity of Apis mellifera royal jelly. Foods. 11(20): 3165. https://doi.org/10.3390/foods11203165
Seyrekoglu, F., Temiz, H., Eser, F. and Yildirim, C., 2024. Optimization of Hypericum perforatum microencapsulation process by spray drying method. AAPS PharmSciTech. 25(5): 99. https://doi.org/10.1208/s12249-024-02820-y
Shahidi Noghabi, M. and Molaveisi, M., 2019. Microencapsulation optimization of cinnamon essential oil in the matrices of gum Arabic, maltodextrin, and inulin by spray‐drying using mixture design. Journal of Food Process Engineering. 43(2): e13341. https://doi.org/10.1111/jfpe.13341
Shi, Y., Wang, J., Wang, Y., Zhang, H., Ma, Y., Zhao, X., et al. 2018. Inlet temperature affects spray drying quality of watermelon powder. Czech Journal of Food Sciences. 36(4): 321–328. https://doi.org/10.17221/406/2017-cjfs
Singh, A. and Van den Mooter, G., 2016. Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews. 100: 27–50. https://doi.org/10.1016/j.addr.2015.12.010
Singh, C.S., Paswan, V.K. and Rai, D.C., 2019. Process optimization of spray dried Jamun (Syzygium cumini L.) pulp powder. LWT. 109: 1–6. https://doi.org/10.1016/j.lwt.2019.04.011
Sonmez, E., Kekecoglu, M., Sahin, H., Bozdeveci, A. and Alpay Karaoglu, S., 2023. An evaluation of the chemical composition and biological properties of Anatolian Royal Jelly, drone brood and queen bee larvae. European Food Research and Technology. 249(5): 1391–1401. https://doi.org/10.1007/s00217-023-04221-0
Souza, L.R.d., Santos, I.A., Machado, G.G.L., Pereira, E.P., Boas, E.V.d.B.V., Botrel, D.A., et al. 2024. Microencapsulation of carotenoids from tucumã (Astrocaryum aculeatum) peel by spray drying: Physicochemical properties, antioxidant activity and application in yogurt. Food and Humanity. 3: 100454. https://doi.org/10.1016/j.foohum.2024.100454
Tan, S.P., Kha, T.C., Parks, S., Stathopoulos, C. and Roach, P.D., 2015. Optimising the encapsulation of an aqueous bitter melon extract by spray-drying. Foods. 4(3): 400–419. https://doi.org/10.3390/foods4030400
Tatar Turan, F., Cengiz, A., Sandikci, D., Dervisoglu, M. and Kahyaoglu, T., 2016. Influence of an ultrasonic nozzle in spray-drying and storage on the properties of blueberry powder and microcapsules. Journal of the Science of Food and Agriculture. 96(12): 4062–4076. https://doi.org/10.1002/jsfa.7605
Tolun, A., Altintas, Z. and Artik, N., 2016. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology. 239: 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001
Tolve, R., Galgano, F., Condelli, N., Cela, N., Lucini, L. and Caruso, M.C., 2021. Optimization model of phenolics encapsulation conditions for biofortification in fatty acids of animal food products. Foods. 10(4): 881. https://doi.org/10.3390/foods10040881
Tonon, R.V., Freitas, S.S. and Hubinger, M.D., 2011. Spray drying of AÇai (Euterpe oleraceae Mart.) juice: Effect of inlet air temperature and type of carrier agent. Journal of Food Processing and Preservation. 35(5): 691–700. https://doi.org/10.1111/j.1745-4549.2011.00518.x
Tumbas Šaponjac, V., Čanadanović-Brunet, J., Ćetković, G., Jakišić, M., Vulić, J., Stajčić, S., et al. 2020. Optimisation of beetroot juice encapsulation by freeze-srying. Polish Journal of Food and Nutrition Sciences. 70(1): 25–34. https://doi.org/10.31883/pjfns/115153
Turchiuli, C., Eloualia, Z., El Mansouri, N. and Dumoulin, E., 2005. Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology. 157(1–3): 168–175. https://doi.org/10.1016/j.powtec.2005.05.024
Ulubayram, N. and Cinar, A.Y., 2023. Microencapsulated and fresh royal jelly: Monitoring 10-HDA content, antibacterial and antifungal activity at different storage periods. Brazilian Archives of Biology and Technology. 66: 220203. https://doi.org/10.1590/1678-4324-2023220203
Vargas, V., Saldarriaga, S., Sanchez, F.S., Cuellar, L.N. and Paladines, G.M., 2024. Effects of the spray-drying process using maltodextrin on bioactive compounds and antioxidant activity of the pulp of the tropical fruit acai (Euterpe oleracea Mart.). Heliyon. 10(13): e33544. https://doi.org/10.1016/j.heliyon.2024.e33544
Veiga, R.D.S.D., Aparecida Da Silva-Buzanello, R., Corso, M.P. and Canan, C., 2019. Essential oils microencapsulated obtained by spray drying: A review. Journal of Essential Oil Research. 31(6): 457–473. https://doi.org/10.1080/10412905.2019.1612788
Yavuz, İ. and Gürel, F., 2017. Türkiye’de satışa sunulan arı sütlerinin kimyasal özellikleri. Mediterranean Agricultural Sciences. 30(3): 281–285. https://doi.org/10.29136/mediterranean.360013
Zouari, A., Mtibaa, I., Triki, M., Jridi, M., Zidi, D., Attia, H. and Ayadi, M.A., 2020. Effect of spray‐drying parameters on the solubility and the bulk density of camel milk powder: A response surface methodology approach. International Journal of Dairy Technology. 73(3): 616–624. https://doi.org/10.1111/1471-0307.12690