Ultrasound technology in environmental sustainability: Vinegar production from black carrot pulp

##plugins.themes.bootstrap3.article.main##

Melikenur Türkol
Seydi Yıkmış
Nazlı Tokatlı
Nihan Sağcan
Waseem Khalid
Abdullah Yinanç
Harun Aksu
Suleiman A. Althawab
Tawfiq Alsulami

Keywords

Abstract

In this study, vinegar obtained from untreated traditional black carrot pulp was compared with vinegar obtained from black carrot pulp subjected to thermal pasteurization and ultrasound treatment. Ultrasound treatment significantly improved the preservation and bioavailability of bioactive compounds, with higher total carotenoid content (TCC), total anthocyanin (TAC), and antioxidant (FRAP) values. It efficiently released bioactives from cell walls, enhancing bioavailability. RSM optimization revealed optimal conditions at 8 minutes processing time and 59.7% amplitude. However, ultrasound-treated vinegar (UT-BCV) was preferred in sensory analysis. Utilizing black carrot pulp supports sustainability, circular economy, and bioavailability goals.

Abstract 0 | Online PDF (Inglese) Downloads 0

Riferimenti bibliografici

Aadil R.M., Zeng X.A., Han Z., Sun D.W., 2013. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 141:3201–6. https://doi.org/10.1016/j.foodchem.2013.06.008
Aadil R.M., Zeng X.A., Wang M.S., Liu Z.W., Han Z., Zhang Z.H., Hong J., Jabbar S., 2015. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int. J. Food Sci. Technol. 50:1144–50. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ijfs.12767. https://doi.org/10. /ijfs.12767
Abid M., Jabbar S., Wu T., Hashim M.M., Hu B., Lei S., Zeng X., 2014. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 21:93–7. https://doi.org/10.1016/j.ultsonch.2013.06.002
Ahmed F., Zaidi S., Ahmad S., 2020. Roleof by-products of fruits and vegetables in functional foods functional food products and sustainable health. In: Springer. Berlin/Heidelberg, Germany, pp 199–218. https://doi.org/10.1007/978-981-15-4716-4_13
Anandhi E., Shams R., Dash K.K., Bhasin J.K., Pandey V.K., Tripathi A., 2024. Extraction and food enrichment applications of black carrot phytocompounds: A review. Appl. Food Res. 4: 100420. https://doi.org/10.1016/j.afres.2024.100420
Aslan Türker D., Doğan M., 2022. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from black carrots: Optimization, cytotoxicity, in-vitro bioavailability and stability. Food Bioprod. Process. 132: 99–113. https://doi.org/10.1016/j.fbp.2022.01.002
Atalar I., Saricaoglu F.T., Odabas H.I., Yilmaz V.A., Gul O., 2020. Effect of ultrasonication treatment on structural, physicochemical and bioactive properties of pasteurized rosehip (Rosa canina L.) nectar. LWT 118:108850. https://doi.org/10.1016/j.lwt.2019.108850
Bhutkar S., Brandão T.R.S., Silva C.L.M., Miller F.A., 2024. Application of ultrasound treatments in the processing and production of high-quality and safe-to-drink kiwi juice. Foods. 13: 328. https://doi.org/10.3390/foods13020328
Campoli S.S., Rojas M.L., do Amaral J.E.P.G., Canniatti-Brazaca S.G., Augusto P.E.D, 2018. Ultrasound processing of guava juice: Effect on structure, physical properties and lycopene in vitro accessibility. Food Chem. 268: 594–601. https://doi.org/10.1016/j.foodchem.2018.06.127
Cemeroğlu B., 2010. Gıda Analizleri, 2nd ed. Nobel Yayıncılık, Ankara.
Cheng L.H., Soh C.Y., Liew S.C., Teh F.F., 2007. Effects of sonication and carbonation on guava juice quality. Food Chem. 104: 1396–401. Available from: https://www.sciencedirect.com/science/article/pii/S0308814607001720. https://doi.org/10.1016/j.foodchem.2007.02.001
Das P.S., Das P., Nayak P.K., Islary A., Kesavan R. krishnan, 2024. Process optimization of thermosonicated modhusuleng (polygonum microcephalum) leaf juice for quality enhancement using response surface methodology. Meas. Food. 15: 100181. https://doi.org/10.1016/j.meafoo.2024.100181
Giusti M.M., Wrolstad R.E., 2001. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 1: 1–13. https://doi.org/10.1002/0471142913.faf0102s00
Hasheminya S., Dehghannya J., 2022. Non-thermal processing of black carrot juice using ultrasound: Intensification of bioactive compounds and microbiological quality. Int. J. Food Sci. Technol. 57: 5848–58. https://doi.org/10.1111/ijfs.15901
Kamiloglu S., Van Camp J., Capanoglu E., 2018. Black carrot polyphenols: Effect of processing, storage and digestion—an overview. Phytochem. Rev. 17: 379–95. https://doi.org/10.1007/s11101-017-9539-8
Kamiloglu S., Capanoglu E., Bilen F.D., Gonzales G.B., Grootaert C., Van De Wiele T., Van Camp J., 2016. Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J. Agric. Food Chem. 64: 2450–8. https://doi.org/10.1021/acs.jafc.5b02640
Kohli K., Prajapati R., Shah R., Das M., Sharma B.K., 2023. Food waste: Environmental impact and possible solutions. Sustain. Food Technol. 2: 70–80. https://doi.org/10.1039/D3FB00141E
Li W., Gong P., Ma H., Xie R., Wei J., Xu M., 2022. Ultrasound treatment degrades, changes the color, and improves the antioxidant activity of the anthocyanins in red radish. LWT 165: 113761. https://doi.org/10.1016/j.lwt.2022.113761
Lopez-Martinez L.X., Campos-Gonzalez N., Zamora-Gasga V.M., Domínguez-Avila J.A., Pareek S., Villegas-Ochoa M.A., Sáyago-Ayerdi S.G., González-Aguilar G.A, 2022. Optimization of ultrasound treatment of beverage from mango and carrot with added turmeric using response surface methodology. Polish J. Food Nutr. Sci. 72: 287–96. https://doi.org/10.31883/pjfns/152432
Martínez-Flores H.E., Garnica-Romo M.G., Bermúdez-Aguirre D., Pokhrel P.R., Barbosa-Cánovas G.V., 2015. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 172: 650–6. https://doi.org/10.1016/j.foodchem.2014.09.072
Masouleh G.A.M, Moslemi M, Nateghi L, 2022. Comparison of microbial loads and bioactive compounds of the grape juice samples treated by ultrasonication and thermal pasteurization. Appl. Food Biotechnol. 9: 217–25.
Mercado Mercado G., López Teros V., Montalvo-González E., González-Aguilar G.A., Alvarez Parrilla E., Sáyago Ayerdi S.G., 2018. Effect of ultrasound-assisted extraction on the release and in vitro bioaccessibility of carotenoids in mango (Mangifera indica L.)‘Ataulfo’-based beverages. Nov. Sci. 10: 100–32. https://doi.org/10.21640/ns.v10i20.1277
Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., Carrière F., Boutrou R., Corredig M., Dupont D., Dufour C., Egger L., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., Macierzanka A., Mackie A., Marze S., McClements D.J., Ménard O., Recio I., Santos C.N., Singh R.P., Vegarud G.E., Wickham M.S..J, Weitschies W., Brodkorb A., 2014. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 5: 1113–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24803111. https://doi.org/10.1039/C3FO60702J
Nguyen C.L., Nguyen H.V.H, 2018. Ultrasonic effects on the quality of mulberry juice. Beverages 4. https://doi.org/10.3390/beverages4030056
Ordóñez-Santos L.E., Martínez-Girón J., Arias-Jaramillo M.E., 2017. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 233: 96–100. Available from: https://www.sciencedirect.com/science/article/pii/S0308814617306957. https://doi.org/10.1016/j.foodchem.2017.04.114
Pattnaik M., Pandey P., Martin G.J.O., Mishra H.N., Ashokkumar M., 2021. Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods 10: 1–30. https://doi.org/10.3390/foods10020279
Rojas M.L., Leite T.S., Cristianini M., Alvim I.D., Augusto P.E.D., 2016. Peach juice processed by the ultrasound technology: Changes in its microstructure improve its physical properties and stability. Food Res. Int. 82: 22–33. Available from: https://www.sciencedirect.com/science/article/pii/S096399691630014X. https://doi.org/10.1016/j.foodres.2016.01.011
Rybak M., Wojdyło A., 2023. Inhibition of α-amylase, α-glucosidase, pancreatic lipase, 15-lipooxygenase and acetylcholinesterase modulated by polyphenolic compounds, organic acids, and carbohydrates of prunus domestica fruit. Antioxidants 12. https://doi.org/10.3390/antiox12071380
Shah S.R., Ukaegbu C.I., Hamid H.A., Alara O.R., 2018. Evaluation of antioxidant and antibacterial activities of the stems of Flammulina velutipes and Hypsizygus tessellatus (white and brown var.) extracted with different solvents. J. Food Meas. Charact. 12: 1947–61. https://doi.org/10.1007/s11694-018-9810-8
Sharma R., Nguyen T.T., Grote U., 2018. Changing consumption patterns-drivers and the environmental impact. Sustain. 10. https://doi.org/10.3390/su10114190
Shen Y., Zhu D., Xi P., Cai T., Cao X., Liu H., Li J., 2021. Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. LWT 142: 111030. https://doi.org/10.1016/j.lwt.2021.111030
Siddeeg A., Zeng X.A., Rahaman A., Manzoor M.F., Ahmed Z., Ammar A.F., 2019. Quality characteristics of the processed dates vinegar under influence of ultrasound and pulsed electric field treatments. J. Food Sci. Technol. 56: 4380–9. Available from: https://link.springer.com/article/10.1007/s13197-019-03906-3. https://doi.org/10.1007/s13197-019-03906-3
Suo G., Zhou C., Su W., Hu X., 2022. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 84. https://doi.org/10.1016/j.ultsonch.2022.105974
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D., 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669–75. https://doi.org/10.1016/j.jfca.2006.01.003
Tokatlı Demirok N., Yıkmış S., Duman Altan A., Apaydın H., 2023. Optimization of ultrasound-treated horsetail-fortified traditional apple vinegar using RSM and ANFIS modeling: Bioactive and sensory properties. J. Food Meas. Charact. 18 (1): 1–16. https://doi.org/10.1007/s11694-023-02156-4
Toktaş B., Bildik F., Özçelik B., 2018. Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. J. Sci. Food Agric. 98: 3066–75. https://doi.org/10.1002/jsfa.8806
Türkol M., Yıkmış S., Ganimet Ş., Gezer G.E., Abdi G., Hussain S., Aadil R.M., 2024. Optimization of sensory properties of ultrasound-treated strawberry vinegar. Ultrason. Sonochem. 105: 106874. https://doi.org/10.1016/j.ultsonch.2024.106874
Wang J., Vanga S.K., Raghavan V., 2019. High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT 107: 299–307. https://doi.org/10.1016/j.lwt.2019.03.024
Wang J., Wang J., Ye J., Vanga S.K., Raghavan V., 2019. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 96: 128–36. Available from: https://www.sciencedirect.com/science/article/pii/S0956713518304602. https://doi.org/10.1016/j.lwt.2019.03.024
Wen C., Zhang J., Zhang H., Dzah C.S., Zandile M., Duan Y., Ma H., Luo X., 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 48: 538–49. https://doi.org/10.1016/j.ultsonch.2018.07.018
Yıkmış S., 2019. Optimization of uruset apple vinegar production using response surface methodology for the enhanced extraction of bioactive substances. Foods 8: 107. Available from: https://www.mdpi.com/2304-8158/8/3/107. https://doi.org/10.3390/foods8030107
Yıkmış S., 2020. Sensory, physicochemical, microbiological and bioactive properties of red watermelon juice and yellow watermelon juice after ultrasound treatment. J. Food Meas. Charact. 14: 1417–26. Available from: https://doi.org/10.1007/s11694-020-00391-7. https://doi.org/10.1007/s11694-020-00391-7
Yıkmış S., Bozgeyik E., Şimşek M.A., 2020. Ultrasound processing of verjuice (unripe grape juice) vinegar: Effect on bioactive compounds, sensory properties, microbiological quality and anticarcinogenic activity. J. Food Sci. Technol. 57: 3445–56. Available from: https://doi.org/10.1007/s13197-020-04379-5. https://doi.org/10.1007/s13197-020-04379-5
Yıkmış S., Duman Altan A., Türkol M., Gezer G.E., Ganimet Ş., Abdi G., Hussain S., Aadil R.M., 2024. Effects on quality characteristics of ultrasound-treated gilaburu juice using RSM and ANFIS modeling with machine learning algorithm. Ultrason. Sonochem. 107: 106922. https://doi.org/10.1016/j.ultsonch.2024.106922
Zhang M., Zhou C., Ma L., Su W., Jiang J., Hu X., 2024. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 10: e27927. https://doi.org/10.1016/j.heliyon.2024.e27927
Zhou L., Wang Y., Hu X., Wu J., Liao X., 2009. Effect of high pressure carbon dioxide on the quality of carrot juice. Innov. Food Sci. Emerg. Technol. 10: 321–7. https://doi.org/10.1016/j.ifset.2009.01.002
Tahir F., Fatima F., Fatima R., Ali E., 2024. Fruit peel extracted polyphenols through ultrasonic assisted extraction: A review. Agrobiological Records 15: 1–12. https://doi.org/10.47278/journal.abr/2023.043.
Xue Q., Ahmad T., Liu Y., 2024. Morphological, physiological and biochemical characterization of pseudoxanthomonas species and its optimal growth kinetics. ABRs 16: 41–48. https://doi.org/10.47278/journal. abr/2024. 010.
Muddassir M., Alotaibi B.A., Aljohani E.S., Alsanhani A., Aldawdahi N., 2024. Institutional support for removing barriers to sustainable agricultural entrepreneurship. ABRs 18: 61–71. https://doi.org/10.47278/journal.abr/2024.038
Noman M.U., Azhar S., 2023. Metabolomics, a potential way to improve abiotic stresses tolerance in cereal crops. Int. J. Agri. Biosci. 12(1): 47–55. https://doi.org/10.47278/journal.ijab/2023.043
Dabiah A.T., Alotibi Y.S., Herab A.H., 2023. Attitudes of agricultural extension workers toward theuse of electronic extension methods in agricultural extension in the Kingdom of Saudi Arabia. Int. J. Agri. Biosci. 12(2): 104–109. https://doi.org/10.47278/journal.ijab/2023.050
Mejhed B.E., Kzaiber F., Terouzi W., 2023. Effect of the combination of freezing and packaging in an acid solution on the stability of Arbutus unedo L. fruits. Int. J. Agri. Biosci. 12(4): 292–298. https://doi.org/10.47278/journal.ijab/2023.080
Hoa A.X., Hoi V.X., Ngoc D.M., Nha N.T.H., Vuong V.T., 2023. Exploring the influence of gender on cassava (manihot esculenta) value chain among smallholder farmers: A case of central highlands, Vietnam. Int. J. Agri. Biosci. 12(4): 299–306. https://doi.org/10.47278/journal.ijab/2023.081
Nasaruddin N., Farid M., Iswoyo H., Anshori M.F., 2024. Utilizing stress tolerance index and principal component analysis for rice selection in hydroponic drought screening based on physiological traits. Int. J. Agri. Biosci. 13(4): 736–743. https://doi.org/10.47278/journal.ijab/2024.176
Mohamed R.G., Tony M.A., Abdelatty A.M., Hady M.M., and E.Y., 2023. Sweet orange (Citrus sinensis) peel powder with xylanase supplementation ımproved growth performance, antioxidant status, and ımmunity of broiler chickens. Int. J. of Vet. 12(2): 175–181. https://doi.org/10.47278/journal.ijvs/2022.148
Mariam S.D., Mathias P.B., Armel Z.N., Innocent K.D., Zacharia G., Michel S.P., 2023. Potential of biogas and organic fertilizers production through anaerobic digestion of slaughterhouse waste in Ouagadougou, Burkina Faso. Int. J. Agri. Biosci. 12(1): 27–30. https://doi.org/10.47278/journal.ijab/2022.041