Optimization of fermentation parameters for enhanced and low-cost production of single-cell protein from rice polishing using Rhizopus oligosporus
##plugins.themes.bootstrap3.article.main##
Keywords
Abstract
A growing concern over food shortages caused by the expanding world population has led to the use of unconventional substitutes for food sources, such as single-cell protein (SCP) produced from microbes using inexpensive feedstock and wastes. The fungal strain Rhizopus oligosporus can consume different substrates, and thus has been used for the production of several products for human and animal consumption. There are very few reports on using rice polishing for SCP production from microbes; however, there is no information regarding the use of R. oligosporus. This study aimed to optimize the process parameters to investigate the possibility of enhanced bioconversion of rice polishing into SCP using R. oligosporus in comparison with the control medium (glucose). Proximate composition of rice polishing as a potential substrate was estimated, and the effects of process variables on biomass and protein content were elucidated. The optimum conditions including substrate concentration 8%, temperature 30°C, pH 5.5, inoculum size 5%, fermentation period 96 h, and optimum amount of supplements in the medium were found to give a considerable biomass (19.5 ± 1.93 g/L) and protein content (49.5 ± 0.9%), which are comparable with the control medium. The optimum conditions were verified and statistically analyzed through confirmatory experiments in triplicate.
Riferimenti bibliografici
Abdullahi, N., Abba Dandago, M. and Kabiru Yunusa, A., 2021. Review on production of single-cell protein from food wastes. Turkish Journal of Agriculture – Food Science and Technology. 9: 968–974. https://doi.org/10.24925/turjaf.v9i6.968-974.3758
Adoki, A., 2002. Culture characteristics of Candida sp. in waste conversion: Implications for single-cell-protein-enriched feed supplement production. Journal of Applied Sciences and Environmental Management. 6: 49–58. https://doi.org/10.4314/jasem.v6i2.17176
Ahmed, S., Ahmad, F., Abu, A. and Hashmi, A., 2010. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp. and Candida utilis. Pakistan Journal of Botany. 42(2): 1225–1234.
Ahmed, S., Mustafa, G., Arshad, M. and Rajoka, M.I., 2017. Fungal biomass protein production from Trichoderma harzianum using rice polishing. BioMed Research International. 2017: 6232793. https://doi.org/10.1155/2017/6232793
Anupama and Ravindra, P., 2000. Value-added food: Single cell protein. Biotechnology Advances. 18: 459–479. https://doi.org/10.1016/s0734-9750(00)00045-8
Arifeen S, Jamil J, Sarwar A, Ullah N, Nelofer R, Aziz T, Alharbi M, Alasmari F, Alshammari A, Albekari TH. 2024. Biosynthesis and Optimization of Amylase from Bacillus Sp Isolated from Soil Samples using Agro Industrial Waste as a Substrate. Appl Ecol Environ Res. 22(4):2927-2940. http://dx.doi.org/10.15666/aeer/2204_29272940
Aziz, T., Shah, Z., Sarwar, A. Ullah N, Khan AA, Sameeh MY, Haiying C, Lin L. 2023. Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conv. Bioref. 1-10. https://doi.org/10.1007/s13399-023-04283-w
Boumaaza, B., Benkhelifa, M. and Belkhoudja, M., 2015. Effects of two salts compounds on mycelial growth, sporulation, and spore germination of six isolates of Botrytis cinerea in the Western North of Algeria. International Journal of Microbiology. 2015: 572626. https://doi.org/10.1155/2015/572626
Das, M., Gupta, S., Kapoor, V., Banerjee, R. and Bal, S., 2008. Enzymatic polishing of rice—A new processing technology. LWT – Food Science and Technology. 41: 2079–2084. https://doi.org/10.1016/j.lwt.2008.02.007
Dharumadurai, D., Subramaniyan, L., Subhasish, S., Nooruddin, T. and Annamalai, P., 2011. Production of single cell protein from pineapple waste using yeast. Innovative Romanian Food Biotechnology. 8: 26–32.
Dong, J., Tang, Y., Hu, Y., Wang, S., Zhou, Z., Shi, Y., Wang, F. (2025). Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS. Journal of Analytical and Applied Pyrolysis, 188, 107055. doi: https://doi.org/10.1016/j.jaap.2025.107055
Dwiatmaka, Y., Lukitaningsih, E., Yuniarti, N. and Wahyuono, S., 2021. Fermentation of soybean seeds using Rhizopus oligosporus for tempeh production and standardization based on isoflavones content. International Journal of Applied Pharmaceutics. 14(6): 131–136. https://dpi.org/10.22159/ijap.2022v14i6.43785
Ferreira, J.A., Lennartsson, P.R. and Taherzadeh, M.J., 2014. Production of ethanol and biomass from thin stillage using food-grade zygomycetes and ascomycetes filamentous fungi. Energies. 7(6): 3872–3885. https://doi.org/10.3390/en7063872
Gao, Y., Li, D. and Liu, Y., 2012. Production of single-cell protein from soy molasses using Candida tropicalis. Annals of Microbiology. 62: 1165–1172. https://doi.org/10.1007/s13213-011-0356-9
Hassan, M., Zia, A., Nauman Ahmad, M., Baseer Us Salam, M., Siraj, M., Sabir, S., Arif, M., Naveed Farooq, T., Aziz, T., & Alshammari, A. (2024). Valorization of banana waste by optimizing nitrocellulose production, yield, and solubility via nitrating acid mixtures and reaction time. Italian Journal of Food Science, 36(2), 224-230. https://doi.org/10.15586/ijfs.v36i2.2559
Ibrahim Rajoka, M., Tariq Kiani, M.A., Khan, S., Awan, M.S. and Hashmi, A.-S., 2004. Production of single-cell protein from rice polishings using Candida utilis. World Journal of Microbiology and Biotechnology. 20(3): 297–301. https://doi.org/10.1023/B:WIBI.0000023845.96123.dd
Irfan, M., Nazir, M.I., Nadeem, M., Gulsher, M., Syed, Q. and Baig, S., 2011. Optimization of process parameters for the production of single-cell biomass of Candida utilis in solid-state fermentation. American–Eurasian Journal of Agricultural & Environmental Sciences. 10: 264–270.
Jennessen, J., Nielsen, K.F., Houbraken, J., Lyhne, E.K., Schnürer, J., Frisvad, J.C., et al. 2005. Secondary metabolite and mycotoxin production by the Rhizopus microsporus group. Journal of Agricultural and Food Chemistry. 53(5): 1833–1840. https://doi.org/10.1021/jf048147n
Kam, S., Abedian Kenari, A., Kenari and Younesi, H., 2012. Production of single cell protein in stickwater by Lactobacillus acidophilus and Aspergillus niger. Journal of Aquatic Food Product. 21(5): 403–417. https://doi.org/10.1080/10498850.2011.605539
Kheiralla, Z.H., El-Gendy, N.S., Ahmed, H.A., Shaltout, T.H. and Hussein, M.M.D., 2018. One-factor-at-a-time (OFAT) optimization of hemicellulases production from Fusarium moniliforme in submerged fermentation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 40(4): 1877–1885. https://doi.org/10.1080/15567036.2018.1487485
Kumari, P.K., Rao, Y.S., Vaishnavi, V.R. and Sowjanya, D., 2018. Production of single cell protein from sugarcane using fungi. International Journal of Pharmaceutical Sciences and Research. 9(3): 1213–1217. https://doi.org/10.13040/IJPSR.0975-8232.9(3).1213-17
Li, X., Ouyang, J., Xu, Y., Chen, M., Song, X., Yong, Q., et al. 2009. Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology. Bioresource Technology. 100(14): 3613–3617. https://doi.org/10.1016/j.biortech.2009.03.001
Mahat, M.S. and Macrae, I.C., 1992. Rhizopus oligosporus grown on natural rubber waste serum for production of single cell protein: A preliminary study. World Journal of Microbiology and Biotechnology. 8(1): 63–64. https://doi.org/10.1007/BF01200687
Mahnaaz, K., Khan, S.S., Zafar, A. and Arshiya, T., 2009. Production of fungal single cell protein using Rhizopus oligosporus grown on fruit wastes. Biological Forum—An International Journal. 1: 26–28.
Maliki, M., Ikhuoria, E.U. and Aluyor, P., 2023. Proximate analysis of selected agricultural waste for their nutritional potential. The North African Journal of Food and Nutrition Research. 7(15): 117–125. https://doi.org/10.51745/najfnr.7.15.117-125
Munawar, R.A., 2010. Biosynthesis of single cell biomass of Candida utilis by submerged fermentation. Pakistan Journal of Science. 62(1): 1–5.
Nadeem, M., Ali, M.A., Syed, Q., Nelofer, R. and Sahar, U., 2016. Nutritional upgrading of various feed ingredients through co-culture solid state fermentation/Çeşitli yem içerikleri besin değerlerinin birlikte kültür katı hal fermentasyonu kullanılarak artırılması. Turkish Journal of Biochemistry. 41(5): 347–353. https://doi.org/10.1515/tjb-2016-0050
Nangul, A. and Bhatia, R., 2013. Microorganisms: A marvellous source of single cell proteins. Journal of Microbiology, Biotechnology and Food Sciences. 3(1): 15–18.
Nyyssölä, A., Suhonen, A., Ritala, A. and Oksman-Caldentey, K.-M., 2022. The role of single cell protein in cellular agriculture. Current Opinion in Biotechnology. 75: 102686. https://doi.org/10.1016/j.copbio.2022.102686
Oshoma, C. and Ikenebomeh, M., 2005. Production of Aspergillus niger biomass from rice bran. Pakistan Journal of Nutrition. 4(1): 32–36. https://doi.org/10.3923/pjn.2005.32.36
Rajoka, M.I., Khan, S.H., Jabbar, M.A., Awan, M.S. and Hashmi, A.S., 2006. Kinetics of batch single cell protein production from rice polishings with Candida utilis in continuously aerated tank reactors. Bioresource Technology. 97(15): 1934–1941. https://doi.org/10.1016/j.biortech.2005.08.019
Ravinder, R., Venkateshwar Rao, L. and Ravindra, P., 2003b. Studies on Aspergillus oryzae mutants for the production of single cell proteins from deoiled rice bran. Food Technology and Biotechnology. 41: 243–246.
Reihani, S.F.S. and Khosravi-Darani, K., 2019. Influencing factors on single-cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology. 37: 34–40. https://doi.org/10.1016/j.ejbt.2018.11.005
Sánchez-Peña, M.J., Márquez-Sandoval, F., Ramírez-Anguiano, A.C., Velasco-Ramírez, S.F., Macedo-Ojeda, G. and González-Ortiz, L.J., 2017. Calculating the metabolizable energy of macronutrients: A critical review of Atwater’s results. Nutrition Reviews. 75(1): 37–48. https://doi.org/10.1093/nutrit/nuw044
Shehzadi, A., Chaudhary, A., Aihetasham, A., Hussain, N., Naz, S., Aziz, T., & Alasmari, A. F. (2024). Determination of hydrolyzing and ethanolic potential of cellulolytic bacteria isolated from fruit waste. Italian Journal of Food Science, 36(1), 127-141. https://doi.org/10.15586/ijfs.v36i1.2470
Sharif, M., Zafar, M.H., Aqib, A.I., Saeed, M., Farag, M.R. and Alagawany, M., 2021. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture. 531(5): 735885. https://doi.org/10.1016/j.aquaculture.2020.735885
Singh, A., Abidi, A.B., Agrawal, A.K. and Darmwal, N.S., 1991. Single cell protein production by Aspergillus niger and its evaluation. Zentralblatt für Mikrobiologie. 146(3): 181–184.
Sorenson, W.G. and Hesseltine, C.W., 1966. Carbon and nitrogen utilization by Rhizopus oligosporus. Mycologia. 58(5): 681–689.
Thiviya, P., Gamage, A., Kapilan, R., Merah, O. and Madhujith, T., 2022. Production of single-cell protein from fruit peel wastes using palmyrah toddy yeast. Fermentation. 8(8): 355. https://doi.org/10.3390/fermentation8080355
Traughber, Z.T., Detweiler, K.B., Price, A.K., Knap, K.E., Harper, T.A., Swanson, K.S., et al. 2021. Effect of crude fiber and total dietary fiber on the calculated nitrogen-free extract and metabolizable energy content of various dog foods fed to client-owned dogs with osteoarthritis. American Journal of Veterinary Research. 82(10): 787–794. https://doi.org/10.2460/ajvr.82.10.787
Usman, M., Zia, A., Nauman Ahmad, M., Alam, S., Ullah, N., Us Salam, M. B., Aziz, T., Alhomrani, M., Alsanie, W. F., & Alamri, A. S. (2024). Extraction and characterization of cellulose from agricultural waste of hemp (Cannabis sativa) and parthenium (Parthenium hysterophorus). Italian Journal of Food Science, 36(4), 17-25. https://doi.org/10.15586/ijfs.v36i4.2659
Yalemtesfa, B., Alemu, T. and Santhanam, A., 2010. Solid substrate fermentation and conversion of orange waste in to fungal biomass using Aspergillus niger KA-06 and Chaetomium Spp. KC-06. African Journal of Microbiology Research. 4(12): 1275–1281.
Yang, H., Wang, X., Wang, J., Liu, H., Jin, H., Zhang, J., Ye, C. (2025). High-value utilization of agricultural waste: A study on the catalytic performance and deactivation characteristics of iron-nickel supported biochar-based catalysts in the catalytic cracking of toluene. Energy, 323, 135806. doi: https://doi.org/10.1016/j.energy.2025.135806
Yousufi, M.K., 2012. Impact of pH on the single cell protein produced on okara–wheat grit substrates using Rhizopus oligosporus and Aspergillus oryzae. IOSR Journal of Environmental Science. 1(2): 32–35. https://doi.org/10.9790/2402-0123235
Yunus, F.U.N., Nadeem, M. and Rashid, F., 2015. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. Journal of the Institute of Brewing. 121(4): 553–557. https://doi.org/10.1002/jib.251
Zheng, Y.-G., Chen, X.-L. and Wang, Z., 2005. Microbial biomass production from rice straw hydrolysate in airlift bioreactors. Journal of Biotechnology. 118(4): 413–420. https://doi.org/10.1016/j.jbiotec.2005.04.022