Application of dielectric barrier discharge cold plasma for improving quality and shelf life of cantaloupe–sugarcane-blended juice

Main Article Content

Abdul Rehman
Muhammad Nadeem
Mian Anjum Murtaza
Nida Firdous
Rizwan Arshad
Ashiq Hussain
Waqar Ali
Ayaz Ali Khan
Inam ur Rahman
Khairiah Mubarak Alwutayd
Fahad Al-Asmari
Fakhira Al-Joufi

Keywords

Abstract

Sugarcane provides natural sweetness and possible health advantages, while cantaloupe, a fruit rich in nutrients, offers vitamins A and C, potassium, and antioxidants. These components add up together to provide a nourishing and revitalizing drink. The impact of dielectric barrier discharge cold plasma (DBDCP) on the quality of cantaloupe–sugarcane-blended juice was examined using an experimental design for varied processing duration (5–15 min), and helium and argon gas flow rate (10 mL/min). DBDCP produces cold plasma (CP), a nonthermal technique that alters food characteristics without causing heat harm. Physicochemical characteristics and bioactive substances were assessed before and after processing. Physicochemical analyses revealed changes in color, pH, and total soluble solids. When CP treatment was applied, it was observed that pH, Brix, and acidity changed from 5.20–5.39, 12.3–12.4, and 0.3–0.40%, respectively. Assessments of phytochemicals revealed variations in total phenolics (131.6–152.27 mg gallic acid equivalent [GAE]/100 mL), total flavonoid content (51.20–56.54 mg catechin equivalent [CE]/100 mL), total flavanol content (12.20–11.57 mg quercetin equivalent [QE]/100 mL), and antioxidant activity (74.3–88.1 mg ascorbic acid equivalent [AAE]/mL). The juice’s safety improved as microbial investigation showed a decrease in total plate count (2.70–1.65 log colony-forming unit [CFU]/mL) and mold count (2.31–1.41 log CFU/mL). Potential enhancements in taste and general appeal were discovered through the evaluation of sensory qualities. The findings imply that DBDCP treatment may be a useful technique for enhancing the safety and quality of blended juice prepared from sugarcane and cantaloupe. With its potential to improve the nutritional, microbiological, and sensory qualities of fruit juices, this study adds to the expanding body of research on the uses of CP technology in food processing.

Abstract 0 | Online PDF Downloads 0

References

Adıgüzel, P., Namlı, M., Nyirahabimana, F., Solmaz, İ. and Sarı, N. 2023. The effects of grafting on plant, fruit and seed quality in cantaloupe (Cucumis melo L. var. cantalupensis) melons. Seeds. 2(1):1–14. https://doi.org/10.3390/seeds2010001
Aktı, N. and Yildiz, S. 2025. Exploring ultrasound-induced free radical formation: a comparative study in water and sour cherry juice using glutathione and terephthalic acid indicators. Ultrason Sonochem. 112:107193. https://doi.org/10.1016/j.ultsonch.2024.107193
Ali, A., Kumar, R.R., Vinutha, T., Singh, T., Singh, S.P., Satyavathi, C.T., Praveen, S. and Goswami, S. 2022. Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol. 248(8):2197–2213. https://doi.org/10.1007/s00217-022-04026-7
Association of Official Analytical Chemists (AOAC) 2012. Official Methods of Analysis of AOAC. AOAC, Arlington, VA.
Avîrvarei, A.C., Salanță, L.C., Pop, C.R., Mudura, E., Pasqualone, A., Anjos, O., Barboza, N., Usaga, J., Dărab, C.P. and Burja-Udrea, C. 2023. Fruit-based fermented beverages: contamination sources and emerging technologies applied to assure their safety. Foods. 12(4):838. https://doi.org/10.3390/foods12040838
Boateng, I.D. 2024. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr. 64(13):4240–4274. https://doi.org/10.1080/10408398.2022.2140121
Bolouki, N., Hsieh, J.-H., Li, C. and Yang, Y.-Z. 2019. Emission spectroscopic characterization of a helium atmospheric pressure plasma jet with various mixtures of argon gas in the presence and the absence of de-ionized water as a target. Plasma. 2(3):283–293. https://doi.org/10.3390/plasma2030020
Bridhikitti, A., Kaewsuk, J., Karaket, N., Friend, R., Sallach, B., Chong, J. P. and Redeker, K.R. 2023. Balancing agriculture and industry through waste utilization for sugarcane sustainability. Sustainability 15(20):14711. https://doi.org/10.3390/su152014711
Chen, M., Chen, X., Ray, S. and Yam, K. 2020. Stabilization and controlled release of gaseous/volatile active compounds to improve safety and quality of fresh produce. Trends Food Sci Technol. 95:33–44. https://doi.org/10.1016/j.tifs.2019.11.005
Chen, M., Li, J., Shu, G., Shen, L., Qiao, E., Zhang, N., Fang, S., Chen, X., Zhao, Z. and Tu, J. 2022. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization. J Nanobiotechnol. 20(1):179. https://doi.org/10.1186/s12951-022-01385-x
Chen, R., Yu, M., Jiang, B. and Chen, J. 2024. Effect of different sterilization methods on the appearance, composition, and flavor of sugarcane juice. J Food Sci. 89(3):1755–1772. https://doi.org/10.1111/1750-3841.16945
de Medeiros Dantas, J.M., Beigbeder, J.-B., Cardozo, J.R.G. and Lavoie, J.M. 2023. Combination of different preservation techniques as low-cost strategies inhibiting sugar degradation in liquid feedstock used for bioethanol fermentation. Biomass Bioenergy. 169:106655. https://doi.org/10.1016/j.biombioe.2022.106655
Dhansu, P., Ram, B., Singh, A.K., Tomar, S.K., Karuppaiyan, R., Kumar, R., ... and Pandey, S.K. 2023. Different treatments for sugarcane juice preservation. Foods. 12(2):311. https://doi.org/10.3390/foods12020311
Doseděl, M., Jirkovský, E., Macáková, K., Krčmová, L.K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L. and Mladěnka, P. 2021. Vitamin C—sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 13(2):615. https://doi.org/10.3390/nu13020615
ElGamal, R., Song, C., Rayan, A.M., Liu, C., Al-Rejaie, S. and ElMasry, G. 2023. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: a comprehensive overview. Agronomy. 13(6):1580. https://doi.org/10.3390/agronomy13061580
Enaru, B., Drețcanu, G., Pop, T.D., Stǎnilǎ, A. and Diaconeasa, Z. 2021. Anthocyanins: factors affecting their stability and degradation. Antioxidants. 10(12):1967. https://doi.org/10.3390/antiox10121967
Fatima, P., Nadeem, M., Hussain, A., Kausar, T., Rehman, A., Siddique, T., ... and Simal-Gandara, J. 2023. Synergistic effect of microwave heating and thermosonication on the physicochemical and nutritional quality of muskmelon and sugarcane juice blend. Food Chem. 425:136489. https://doi.org/10.1016/j.foodchem.2023.136489
Fernandes, F.A. and Rodrigues, S. 2021. Cold plasma processing on fruits and fruit juices: a review on the effects of plasma on nutritional quality. Processes. 9(12):2098. https://doi.org/10.3390/pr9122098
Geremias-Andrade, I.M., Rocheto, A.C., Gallo, F.A. and Petrus, R.R. 2019. The shelf life of standardized sugarcane juice stored under refrigeration. Food Sci Technol. 40:95–101. https://doi.org/10.1590/fst.33918
Giannakourou, M.C. and Taoukis, P.S. 2021. Effect of alternative preservation steps and storage on vitamin C stability in fruit and vegetable products: critical review and kinetic modelling approaches. Foods. 10(11):2630. https://doi.org/10.3390/foods10112630
Heydari, M., Carbone, K., Gervasi, F., Parandi, E., Rouhi, M., Rostami, O., Abedi-Firoozjah, R., Kolahdouz-Nasiri, A., Garavand, F. and Mohammadi, R. 2023. Cold plasma-assisted extraction of phytochemicals: a review. Foods. 12(17):3181. https://doi.org/10.3390/foods12173181
Hussain, A., Batool, S.A., Sidrah, Kabir, K., Siddique, T., Yaqub, S., ... and Korma, S.A. 2024a. Synergism of sonication and microwave on phytochemical and physicochemical capacity of sugarcane-mint blend juice. Discover Food. 4(1):18. https://doi.org/10.1007/s44187-024-00086-8
Hussain, A., Gorsi, F.I., Ali, M.Q., Yaqub, S., Asif, A., Bibi, B., ... and Korma, S.A. 2025. Exploration of underutilized chayote fractions following drying and extraction. Food Chem. 465:142129. https://doi.org/10.1016/j.foodchem.2024.142129
Hussain, A., Kausar, T., Siddique, T., Kabir, K., An, Q.U., Rukhsar, F., ... and Mahdi, A.A. 2024b. Physiological and biochemical variations of naturally ripened mango (Mangifera Indica L.) with synthetic calcium carbide and ethylene. Sci Rep. 14(1):2121. https://www.nature.com/articles/s41598-024-52483-9
Iqbal, A., Nadeem, M., Ainee, A., Qureshi, TM., Khalid, W., Malik, F., Rahman, SU., Rehman, A., Khalid, MZ., Ahmad, N., Nawaz, A., Mohamed Ahmed, IA . 2023. Quality evaluation of ozone-processed Kinnow (Citrus reticulata Blanco) juice at ambient temperature. Int J Food Prop. 26(1):2420–2432. https://doi.org/10.1080/10942912.2023.2249266
Islam, S., Kumar, P., Cheroor, R., Jaiswal, M., Begum, A., Srivastav, P.P. and Srivastava, B. 2024. Influence of non-thermal dielectric barrier discharge (DBD) plasma treatment on pectin methylesterase inactivation and ascorbic acid degradation in Citrus sinensis (cv. Malta) juice. J Food Meas Charact. 18(11):9603–9617. https://doi.org/10.1007/s11694-024-02907-x
Jiang, H., Lin, Q., Shi, W., Yu, X. and Wang, S. 2022. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front Nutr. 9:1015980. https://doi.org/10.3389/fnut.2022.1015980
Kaavya, R., Pandiselvam, R., Kothakota, A., Banuu Priya, E.P. and Arun Prasath, V. 2019. Sugarcane juice preservation: a critical review of the state of the art and way forward. Sugar Tech. 21:9–19. https://doi.org/10.1007/s12355-018-0622-2
Korzeniowska, M.H., Łyczko, J. and Lamadrid, M.C. 2024 . Processing effects on food sensory attributes. In: Sensory Science Applications for Food Production. IGI Global, Hershey, PA, pp. 249–283. https://doi.org/10.4018/979-8-3693-2121-8.ch012
Kumar, S., Pipliya, S. and Srivastav, P.P. 2023. Effect of cold plasma on different polyphenol compounds: a review. J Food Proc Eng. 46(1):e14203. https://doi.org/10.1111/jfpe.14203
Kumar, S., Pipliya, S., Srivastav, P.P. and Srivastava, B. 2024. Shelf life and storage stability of cold plasma treated kiwifruit juice: kinetic models. Int J Food Prop. 27(1):1–23. https://doi.org/10.1080/10942912.2024.2409904
Lan, T., Wang, J., Bao, S., Zhao, Q., Sun, X., Fang, Y., ... & Liu, S. 2023. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res Int. 168:112784. https://doi.org/10.1016/j.foodres.2023.112784
Lisboa, H.M., Pasquali, M.B., dos Anjos, A.I., Sarinho, A.M., de Melo, E.D., Andrade, R., Batista, L., Lima, J., Diniz, Y. and Barros, A. 2024. Innovative and sustainable food preservation techniques: enhancing food quality, safety, and environmental sustainability. Sustainability. 16(18):8223. https://doi.org/10.3390/su16188223
Liu, Y., Cheng, H., Liu, H., Ma, R., Ma, J. and Fang, H. 2019. Fermentation by multiple bacterial strains improves the production of bioactive compounds and antioxidant activity of goji juice. Molecules. 24(19):3519. https://doi.org/10.3390/molecules24193519
Liu, X., Le Bourvellec, C., Guyot, S. and Renard, C.M. 2021. Reactivity of flavanols: their fate in physical food processing and recent advances in their analysis by depolymerization. Comp Rev Food Sci Food Safety. 20(5):4841–4880. https://doi.org/10.1111/1541-4337.12797
López, M., Calvo, T., Prieto, M., Múgica-Vidal, R., Muro-Fraguas, I., Alba-Elías, F. and Alvarez-Ordóñez, A. 2019. A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Front Microbiol. 10:622. https://doi.org/10.3389/fmicb.2019.00622
Ma, T., Wang, J., Lan, T., Bao, S., Zhao, Q., Sun, X. and Liu, X. 2024. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010–2021, an updated overview and current issues. Crit Rev Food Sci Nutr. 64(8):2197–2247. https://doi.org/10.1080/10408398.2022.2121806
Manzoor, M.F., Ahmad, N., Ahmed, Z., Siddique, R., Mehmood, A., Usman, M. and Zeng, X.A. 2020. Effect of dielectric barrier discharge plasma, ultra‐sonication, and thermal processing on the rheological and functional properties of sugarcane juice. J Food Sci. 85(11):3823–3832. https://doi.org/10.1111/1750-3841.15498
Mayookha, V.P., Pandiselvam, R., Kothakota, A., Ishwarya, S.P., Khanashyam, A.C., Kutlu, N., ... & Abd El-Maksoud, A.A. 2023. Ozone and cold plasma: emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control. 144:109399. https://doi.org/10.1016/j.foodcont.2022.109399
Mendes Ferreira, A. and Mendes-Faia, A. 2020. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods. 9(9):1231. https://doi.org/10.3390/foods9091231
Mkhari, T., Adeyemi, J.O. and Fawole, O.A. 2025. Recent advances in the fabrication of intelligent packaging for food preservation: a review. Processes. 13(2):539. https://doi.org/10.3390/pr13020539
Nachal, N., Pegu, K. and Arya, S.S. 2023. Enhancement of physicochemical stability and reduction in enzyme and microbial activity of apple juice by hydrodynamic cavitation processing. J Agric Food Res. 14:100797. https://doi.org/10.1016/j.jafr.2023.100797
Nanje Gowda, N., Kambhampati, V., Pulivarthi, M.K., Chauhan, R., Pandiselvam, R. and Farahnaky, A. 2024. Thermal and non-thermal bioprocessing: a comprehensive review on millet starch properties and digestibility. J Food Meas Charac. 19(2):806–832. https://doi.org/10.1007/s11694-024-02998-6
Nath, P., Pandey, N., Samota, M., Sharma, K., Kale, S., Kannaujia, P., Sethi, S. and Chauhan, O. 2022 . Browning reactions in foods. In: Advances in Food Chemistry: Food Components, Processing and Preservation. Springer, Cham, Switzerland, pp. 117–159. https://doi.org/10.1007/978-981-19-4796-4_4
Nawaz, R., Abbasi, N. A., Hafiz, I. A. and Khalid, A. 2019. Color-break effect on Kinnow (Citrus nobilis Lour x Citrus deliciosa Tenora) fruit’s internal quality at early ripening stages under varying environmental conditions. Sci Horticul. 256:108514. https://doi.org/10.1016/j.scienta.2019.05.041
Nehmé, L., El Tekle, M., Barakat, N., El Khoury, A., Azzi-Achkouty, S. and El Rayess, Y. 2024. Alternative processes for apple juice stabilization and clarification: a bibliometric and comprehensive review. Processes. 12(2):296. https://doi.org/10.3390/pr12020296
Nwabor, O.F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C. and Hart, A. 2022. A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Eng Rev. 14(4):535–554. https://doi.org/10.1007/s12393-022-09316-0
Obileke, K., Onyeaka, H., Miri, T., Nwabor, O.F., Hart, A., Al‐Sharify, Z.T., Al‐Najjar, S. and Anumudu, C. 2022. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J Food Proc Eng. 45(10):e14138. https://doi.org/10.1111/jfpe.14138
Okoye, R. and Abba, O. 2024. Development of mycological medium using tomato juice extract as principal base. UMYU J Microbiol Res. 9(3):227–233. https://doi.org/10.47430/ujmr.2493.028
Ozen, E., Adhikari, K. and Singh, R.K. 2024. Effect of atmospheric cold plasma on the physicochemical properties and volatile compounds of apple and cantaloupe juices. Food Bioproc. Technol. 17(12):5372–5384. https://doi.org/10.1007/s11947-024-03458-1
https://doi.org/10.1007/s11947-024-03509-7
Ozen, E. and Singh, R. 2020. Atmospheric cold plasma treatment of fruit juices: a review. Trends Food Sci Technol. 103:144–151. https://doi.org/10.1016/j.tifs.2020.07.020
Paixão, L.M., Fonteles, T.V., Oliveira, V.S., Fernandes, F.A. and Rodrigues, S. 2019. Cold plasma effects on functional compounds of siriguela juice. Food Bioproc Technol. 1:110–121. https://doi.org/10.1007/s11947-018-2197-z
Palumbo, M., Attolico, G., Capozzi, V., Cozzolino, R., Corvino, A., de Chiara, M.L.V., Pace, B., Pelosi, S., Ricci, I. and Romaniello, R. 2022. Emerging postharvest technologies to enhance the shelf-life of fruit and vegetables: an overview. Foods. 11(23):3925. https://doi.org/10.3390/foods11233925
Pasquali, F., Stratakos, A.C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., ... & Trevisani, M. 2016. Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 60:552–559. https://doi.org/10.1016/j.foodcont.2015.08.043
Petruzzi, L., Campaniello, D., Speranza, B., Corbo, M.R., Sinigaglia, M. and Bevilacqua, A. 2017. Thermal treatments for fruit and vegetable juices and beverages: a literature overview. Comp Rev Food Sci Food Safety. 16(4):668–691. https://doi.org/10.1111/1541-4337.12270
Punia Bangar, S., Trif, M., Ozogul, F., Kumar, M., Chaudhary, V., Vukic, M., Tomar, M. and Changan, S. 2022. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comp Rev Food Sci Food Safety. 21(2):1958–1978. https://doi.org/10.1111/1541-4337.12895
Qin, L., Takeuchi, N., Takahashi, K., Kang, J., Kim, K.H. and Li, O.L. 2021. N2/Ar plasma-induced surface sulfonation on graphene nanoplatelets for catalytic hydrolysis of cellulose to glucose. App Surf Sci. 545:149051. https://doi.org/10.1016/j.apsusc.2021.149051
Rodríguez, M.L., Pérez, S., Mena-Mollá, S., Desco, M.C. and Ortega, Á.L. 2019. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies. Oxid Med Cell Long. 2019(1):4940825. https://doi.org/10.1155/2019/4940825
Roobab, U., Aadil, R.M., Madni, G.M. and Bekhit, A.E.D. 2018. The impact of nonthermal technologies on the microbiological quality of juices: a review. Comp Rev Food Sci Food Safety. 17(2):437–457. https://doi.org/10.1111/1541-4337.12336
Shakoor, S., Saleem, S., Raheem, I.U., Mukhtar, A., Asghar, M.T. and Azmat, M.A. 2025. Exploring various preservative methods in extending the shelf-life of sugarcane juice. J Food Sci Technol. 1–11. https://doi.org/10.1007/s13197-025-06252-9
Shi, C., Jia, L., Chen, Y., Aziz, T., Shami, A., Asmari, FA., Joufi, FA., Cui, H., Lin, L. 2025. Exploration of the inhibitory and eradicative effects of diacetyl on Listeria monocytogenes biofilms and its potential application on cantaloupe preservation. Food Control 111584. https://doi.org/10.1016/j.foodcont.2025.111584
Siddique, F., Hussain, A., Noreen, S., Arif, M.R., Yaqub, S., Batool, S. A., ... & Mahdi, A.A. 2023. Impact of different processing techniques (chemical, heating and sonication) on physicochemical and microbial characterization of kinnow-whey based beverage. Discover Food. 3(1):18. https://doi.org/10.1007/s44187-023-00060-w
Steel, R.G. and Torrie, J.H. 1981. Principles and Procedures of Statistics: A Biometrical Approach, 2nd edn. McGraw-Hill, Columbus, OH, 633 p.
Su, X., Wu, F., Zhang, Y., Yang, N., Chen, F., Jin, Z. and Xu, X. 2019. Effect of organic acids on bread quality improvement. Food Chem. 278:267–275. https://doi.org/10.1016/j.foodchem.2018.11.011
Sunil, N.C., Singh, J., Chandra, S., Chaudhary, V. and Kumar, V. 2018. Non-thermal techniques: application in food industries: a review. J Pharmacog and Phytochem. 7(5):1507–1518.
Thirumdas, R., Sarangapani, C. and Annapure, U.S. 2018. Cold plasma: a novel non-thermal technology for food processing. Food Biophys. 10:1–11. https://doi.org/10.1007/s11483-014-9382-z
Toy, J.Y.H., Lu, Y., Huang, D., Matsumura, K. and Liu, S.-Q. 2022. Enzymatic treatment, unfermented and fermented fruit-based products: current state of knowledge. Crit Rev Food Sci Nutr. 62(7):1890–1911. https://doi.org/10.1080/10408398.2020.1848788
Tripathy, S. and Srivastav, P.P. 2024. Synergistic effects of dielectric barrier discharge (DBD) cold plasma pretreatment combined with microwave drying on the physicochemical and functional properties of Centella asiatica leaves. Food Bioproc Technol. 17(11):3979–3998. https://doi.org/10.1007/s11947-024-03364-6
Umair, M., Jabeen, S., Ke, Z., Jabbar, S., Javed, F., Abid, M., Khan, K.-u.R., Ji, Y., Korma, S.A. and El-Saadony, M.T. 2022. Thermal treatment alternatives for enzymes inactivation in fruit juices: recent breakthroughs and advancements. Ultrason Sonochem. 86:105999. https://doi.org/10.1016/j.ultsonch.2022.105999
Vella, F.M., Cautela, D. and Laratta, B. 2019. Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods. 8:2–11. https://doi.org/10.3390/foods8060196
Wenske, S., Lackmann, J.-W., Bekeschus, S., Weltmann, K.-D., Von Woedtke, T. and Wende, K. 2020. Nonenzymatic post-translational modifications in peptides by cold plasma-derived reactive oxygen and nitrogen species. Biointerphases. 15(6):061008. https://doi.org/10.1116/6.0000529
Wang X, Liu Y, Xu Y, Gao S, Xu Q, Gong H, Yao L, Shi S, Wang S, Wang H, Qin L, Wu J. 2025. Structural characterization of a pectic polysaccharide from Rubus chingii Hu. unripe fruits and its efficacy in inhibiting intestinal lipid absorption in vivo. Carbohydr Polym. 363:123728. doi: 10.1016/j.carbpol.2025.123728.
Xanthakis, E., Gogou, E., Taoukis, P. and Ahrné, L. 2018. Effect of microwave-assisted blanching on the ascorbic acid oxidase inactivation and vitamin C degradation in frozen mangoes. Innov Food Sci Emerg Technol. 48:248–257. https://doi.org/10.1016/j.ifset.2018.06.012
Xu, Z., Zhu, B., Xue, X., Hu, S. and Cheng, C. 2022. Study on immediate and long-term growth inhibition of Microcystis aeruginosa by non-thermal plasma. Chem Eng J. 429:132397. https://doi.org/10.1016/j.cej.2021.132397
Zargarchi, S. and Esatbeyoglu, T. 2024. Assessing the impact of cold plasma rotational dynamics on ginger's total phenolic content, antioxidant activity, surface structure and color using response surface methodology. Food Sci Technol (LWT). 208:116682. https://doi.org/10.1016/j.lwt.2024.116682
Zargarchi, S., Hornbacher, J., Afifi, S.M., Saremnezhad, S., Günal-Köroğlu, D., Capanoglu, E. and Esatbeyoglu, T. 2024. Exploring the impact of cold plasma treatment on the antioxidant capacity, ascorbic acid, phenolic profile, and bioaccessibility of fruits and fruit juices. Food Front. 5(3):1108–1125. https://doi.org/10.1002/fft2.372
Zhang, Q., Li, H., Zheng, R., Cao, L., Zhang, S., Zhang, S, Zhang, S., Sheng, H., Jiang, Y., Wang, Y., Fu, L. 2024. Comprehensive analysis of advanced glycation end-products in commonly consumed foods: presenting a database for dietary AGEs and associated exposure assessment. Food Science and Human Wellness, 13(4): 1917-1928. https://doi.org/10.26599/FSHW.2022.9250159
Zhao, Y.M., Patange, A., Sun, D.W. and Tiwari, B. 2020. Plasma-activated water: physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comp Rev Food Sci Food Safety. 19(6):3951–3979. https://doi.org/10.1111/1541-4337.12644
Zhou, C., Hu, Y., Zhou, Y., Yu, H., Li, B., Yang, W., Zhai, X., Wang, X., Liu, J. and Wang, J. 2024. Air and argon cold plasma effects on lipolytic enzymes inactivation, physicochemical properties and volatile profiles of lightly-milled rice. Food Chem. 445:138699. https://doi.org/10.1016/j.foodchem.2024.138699
Zia, H., Slatnar, A., Košmerl, T. and Korošec, M. 2024. A review study on the effects of thermal and non-thermal processing techniques on the sensory properties of fruit juices and beverages. Front Food Sci Technol. 4:1405384. https://doi.org/10.3389/frfst.2024.1405384