Scrutinizing the antidiabetic, antidiarrheal, and anti-inflammatory activities of methanolic extract of pomegranate peel via different approaches

Main Article Content

Waqas A. Bacha
Amir Hamza
Ayaz Ali Khan
Tariq Aziz
Jianbo Wu
Fahad Al-Asmari
Manal Y Sameeh
Abdulhakeem S Alamri
Majid Alhomrani
Ahmad A. Alghamdi
Abdullah A. Alqasem
Bandar K. Baothman
Naif ALSuhaymi
Suzan M. Fathuldeen
Waqar Ahmad

Keywords

alloxan, castor oil, antidiabetic, antidiarrheal, pomegranate peel extract

Abstract

The objective of the current study was to evaluate the potential of Punica granatum L peel in mice as an antidiarrheal and antidiabetic agent. In an antidiarrheal study, different doses (50, 100, 150, and 200 mg/kg) of methanolic pomegranate peel extract (PPE) were administrated to castor oil-induced (1 mL/kg) diarrheal mice. Mice administered loperamide hydrochloride (3 mg/kg) were treated as a baseline group. During the experiment, electrolyte and hematological levels were analyzed, and at the end, histopathology of the intestine was performed. For antidiabetic activity, PPE doses (50, 100, 150, and 200 mg/kg) and metformin hydrochloride were administered to alloxan-induced (150 mg/kg) diabetic mice groups, and biochemical and hematological parameters were analyzed. Liver histopathology was done at the end of the experiment. The study found that castor oil caused diarrhea and had a significant (p < 0.05) impact on hematological parameters and electrolyte levels, compared with negative control group. PPE helped to restore altered parameters to normal levels. Histopathology of positive control group revealed abnormal cell structures, with irregularly arranged villi, unclear mucosal architecture of the ileal section, and nuclei cells were damaged and prone to collapsing. Significant dose-dependent recovery was observed in PPE-fed mice groups. After inducing and confirmation of diabetes with alloxan, all groups, except the negative control group, had significantly high glucose levels (p < 0.05). Levels of C-reactive protein and bilirubin were significantly altered, but PPE and metformin hydrochloride showed potential to improve these parameters. In positive control group mice, liver histology showed microvesicular fatty changes throughout the acinus, reactive Kupffer cells, mid-portal inflammation, reduced portal triad, centrilobular visibility, and well-differentiated central vein with well-formed nuclei. Similarly, significant dose-dependent recovery was observed in PPE-administrated mice groups. These results demonstrated that PPE had promising antidiarrheal and antidiabetic potential.

Abstract 353 | PDF Downloads 392 HTML Downloads 0 XML Downloads 90

References

Ahmad E., Jahangeer M., Mahmood A.Z., Aziz T., Alharbi M., Alshammari A., et al. 2023a. Characterization and gastroprotective effects of Rosa brunonii Lindl. fruit on gastric mucosal injury in experimental rats–a preliminary study. Acta Biochim Pol. 70(3): 633–641. 10.18388/abp.2020_6772

Ahmad B., Muhammad Yousafzai A., Maria A., Khan A.A., Aziz T., Alharbi M., et al. 2023b. Curative Effects of Dianthus orientalis against paracetamol-triggered oxidative stress, hepatic and renal injuries in rabbit as an experimental model. Separations, 10: 182. 10.3390/separations10030182

Almuttairi R.S. 2023. The Effects of Metformin Treatment on Diabetic Albino Rats’ Pancreas, Liver, and Kidney Histology. Arch Razi Inst. 28;78(1): 459–463. 10.22092/ARI.2022.359289.2394

Ammara A., Sobia A., Nureen Z., Sohail A., Abid S., Aziz T., et al. 2023. Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. Eur Rev Med Pharmacol Sci. 27(13): 5951–5963. 10.26355/eurrev_202307_32947

Ammon H., Thomas P. and Phillips S. 1974. Effects of oleic and ricinoleic acids on net jejunal water and electrolyte movement. Perfusion studies in man. J Clin Invest. 53: 374–379. 10.1172/JCI107569

Ansari M.N., Saeedan A.S., Bajaj S. and Singh L. 2021. Evaluation of antidiabetic and hypolipidemic activity of Barleria cristata Linn. leaves in alloxan-induced diabetic rats. 3 Biotech. 11(4): 170. 10.1007/s13205-021-02728-5

Antonisamy P., Duraipandiyan V., Ignacimuthu S. and Kim J.-H. 2015. Anti-diarrhoeal activity of friedelin isolated from Azima tetracantha lam. in wistar rats. South Ind J Biol Sci. 1: 34–37.

Aqib M.S., Muhammad N., Shafiq U.R., Noor U.L., Tariq A., Alharbi M., et al. 2023. Iron oxide nanoparticles synthesis from madhuca indica plant extract, and assessment of its cytotoxic, antioxidant, anti-inflammatory and anti-diabetic properties via different nano informatics approaches. ACS Omega. 8(37): 33358–33366. 10.1021/acsomega.3c02744

Arnold C. 2013. The new danger of synthetic drugs. Lancet. 382: 15–16. 10.1016/S0140-6736(13)61512-3

Attia N.Y., Abd El-Aleem I.M., El Tobgy K.M., Mohamed H.F. 2014. Biochemical studies on pomegranate. Biochem Studies Pomegranate. 10.21608/assjm.2014.111897

Aziz T., Ihsan F., Ali Khan A., Ur Rahman S., Zamani G.Y., Alharbi M., et al. 2023. Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim Pol. 70(1): 211–218. 10.18388/abp.2020_6621

Baker D.E. 2007. Loperamide: a pharmacological review. Rev Gastroenterologic Disorders. 7: S11–S8. PMid: 18192961

Boroushaki M.T., Mollazadeh H. and Afshari A.R. 2016. Pomegranate seed oil: a comprehensive review on its therapeutic effects. Int J Pharm Sci Res. 7: 430. 10.13040/IJPSR.0975-8232.7

Bustreo F., Okwo-bele J. and Kamara L. 2015. World Health Organization perspectives on the contribution of the global alliance for vaccines and immunization on reducing child mortality. Arch Dis Childhood 100: S34–S37. 10.1136/archdischild-2013-305693

Cerdá B., Cerón J.J., Tomás-Barberán F.A. and Espín J.C. 2003. Repeated oral administration of high doses of the pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem. 51: 3493–3501. 10.1021/jf020842c

Cerdá B., Tomás-Barberán F.A. and Espín J.C. 2005. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability. J Agric Food Chem. 53: 227–235. 10.1021/jf049144d

Chidambara M.K.N., Jayaprakasha G.K. and Singh R.P. 2002. Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J Agr Food Chem. 50: 4791–4795. 10.1021/jf0255735

Ejaz A., Muhammad J., Nadeem I.B., Sarwar A., Aziz T., Alharbi M., et al. 2023. Isolation, structure elucidation & antidiabetic potential of Rosa brunonii L. fruit–fight diabetes with natural remedies. J Chil Chem Soc. 68(2): 5887–5894.

Elfalleh W., Hannachi H., Tlili N., Yahia Y., Nasri N. and Ferchichi A. 2012. Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. J Med Plants Res. 6: 4724–4730. 10.5897/JMPR11.995

El-Kady A.M., Abdel-Rahman I.A., Fouad S.S., Allemailem K.S., Istivan T., Ahmed S.F., et al. 2021. Pomegranate peel extract is a potential alternative therapeutic for giardiasis. Antibiotics. 10(6): 705. 10.3390/antibiotics10060705.

Espín J.C., González-Barrio R., Cerdá B., López-Bote C., Rey A.I., Tomás-Barberán F.A. 2007. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J Agric Food Chem. 55: 10476–10485. 10.1021/jf0723864

Faddladdeen K.A. and Ojaimi A.A. 2019. Protective effect of pomegranate (Punica granatum) extract against diabetic changes in adult male rat liver: histological study. J Microsc Ultrastruct. 7: 165. 10.4103/JMAU.JMAU_6_19

Gaonkar V.P. and Hullatti K. 2020. Indian traditional medicinal plants as a source of potent anti-diabetic agents: a review. J Diabetes Metab Disord Control (JDMDC). 19: 1895–1908. 10.1007/s40200-020-00628-8

Hayat P., Khan I., Rehman A., Jamil T., Hayat A., Rehman M.U., et al. 2023. Myogenesis and analysis of antimicrobial potential of silver nanoparticles (AgNPs) against pathogenic bacteria. Molecules. 28: 637. 10.3390/molecules28020637

Hou C., Zhang W., Li J., Du L., Lv O., Zhao S. and Li J. 2019. Beneficial effects of pomegranate on lipid metabolism in metabolic disorders. Mol Nutr Food Res. 63: 1800773. 10.1002/mnfr.201800773

Hussain Z, Jahangeer M, Abid S, Najeeb U, Tariq A, Metab A, and Abdulrahman A. 2023. Synthesis and characterization of silver nanoparticles mediated by the mentha piperita leaves extract and exploration of its antimicrobial activities. J Chil Chem Soc. 68(2): 5865–5870.

Iram K., Sobia I., Nureen Z., Suhail A., Tariq A., Fahad A.A., et al. 2023. Isolation, preparation and investigation of leaf extracts of aloe barbadensis for its remedial effects on tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) by in vivo and in silico approaches in experimental rats. Acta Biochim Pol. 6827: 1–7. 10.18388/abp.2020_6827

Ismail T., Sestili P. and Akhtar S. 2012. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 143: 397-405. 10.1016/j.jep.2012.07.004

Jain V., Viswanatha G.L., Manohar D. and Shivaprasad H. 2012. Isolation of antidiabetic principle from fruit rinds of Punica granatum. Evid Based Complement Alternat Med. 10.1155/2012/147202

Kaderides K., Kyriakoudi A., Mourtzinos I. and Goula A.M. 2021. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci Technol. 115: 380–390. 10.1016/j.tifs.2021.06.050

Khalil E.A. 2004. Antidiabetic effect of an aqueous extract of pomegranate (Punica granatum L.) peels in normal and alloxan diabetic rats. Egypt J Hosp Med. 16: 92–99.

Khan B.H., Ahmad J., Ahmad F. and Yunus S.M. 2018. Hepatoprotective effect of aqueous extracts of root and peel of in Punica granatum wistar rats. Asian J Pharm Pharmacol. 4: 888–898. 10.31024/ajpp.2018.4.6.26

Lansky E.P. and Newman R.A. 2007. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 109: 177–206. 10.1016/j.jep.2006.09.006

Levy A.P., Gerstein H.C., Miller-Lotan R., Ratner R., McQueen M., Lonn E. and Pogue J. 2004. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Diabetes Care. 27: 2767–2767. 10.2337/diacare.27.11.2767.

Machado T.D.B., Leal I.C., Amaral A.C.F., Santos K., Silva M.G.D. and Kuster R.M. 2002. Antimicrobial ellagitannin of Punica granatum fruits. J Braz Chem Soc. 13: 606–610. 10.1590/S0103-50532002000500010

Magliano D.J. and Boyko E.J. 2022. IDF Diabetes Atlas. PMid: 35914061

Mamedov N. 2012. Medicinal plants studies: history, challenges and prospective. Med Aromat Plants. 1: e133. 10.4172/2167-0412.1000e133

Mekawi E.M., Sharoba A.M. and Ramadan M.F. 2019. Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. J Food Meas charact. 13: 3298–3306.

Moneim A.E.A., Dkhil M.A. and Al-Quraishy S. 2011. Studies on the effect of pomegranate (Punica granatum) juice and peel on liver and kidney in adult male rats. J Med Plants Res. 5: 5083–5088.

Muhammad N., Makhdoom S.I., Rehman S.U., Tariq A., Bashir F., Ali U., et al. 2023. Biosynthesis and mathematical interpretation of zero-valent iron NPs using nigella sativa seed tincture for indemnification of carcinogenic metals present in industrial effluents. Molecules. 28(8): 3299. 10.3390/molecules28083299

Munuswamy H., Thirunavukkarasu T., Rajamani S., Elumalai E.K. and Ernest D. 2013. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu. J Acute Dis. 2: 99–105. 10.1016/S2221-6189(13)60107-9

Mutahar S.S., Mutlag M.A.-O. and Najeeb S.A.-Z. 2012. Antioxidant activity of pomegranate (Punica granatum L.) fruit peels. Food Nutr Sci. 10.4236/fns.2012.37131

Nagami G.T. 2016. Hyperchloremia–why and how. Nefrologia. 36: 347–353. 10.1016/j.nefro.2016.04.001

Naseer A.S. and Muhammad R.K. 2014. Antidiabetic Effect of Sida cordata in Alloxan Induced Diabetic Rats, BioMed Research International. 671294: 15. 10.1155/2014/671294

Navarro V., Villarreal M.L., Rojas G. and Lozoya X. 1996. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol. 53: 143–147. 10.1016/0378-8741(96)01429-8

Naveed M., Batool H., Rehman S.U., Javed A., Makhdoom S.I., Aziz T., et al. 2022a. Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using brachychiton populneus leaf extract. Processes. 10(8): 1521. 10.3390/pr10081521

Naveed M., Bukhari B., Aziz T., Zaib S., Mansoor M.A., Khan A.A., et al. 2022b. Green synthesis of silver nanoparticles using the plant extract of acer oblongifolium and study of its antibacterial and antiproliferative activity via mathematical approaches. Molecules. 27(13): 4226. 10.3390/molecules27134226

Palombo E.A. 2006. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res. 20: 717–724. 10.1002/ptr.1907

Pannemans J. and Corsetti M. 2018. Opioid receptors in the GI tract: targets for treatment of both diarrhea and constipation in functional bowel disorders? Curr Opin Pharmacol. 43: 53–58. 10.1016/j.coph.2018.08.008

Pierce N.F., Carpenter J.R.C.C., Elliott H.L. and Greenough III W.B. 1971. Effects of prostaglandins, theophylline, and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum. Gastroenterology. 60: 22–32. 10.1016/S0016-5085(71)80003-3

Qnais E., Elokda A., Abu Ghalyun Y. and Abdulla F. 2007. Antidiarrheal activity of the aqueous extract of Punica granatum (pomegranate) peels. Pharm Biol. 45: 715–720. 10.1080/13880200701575304

Rajan S., Mahalakshmi S., Deepa V., Sathya K., Shajitha S. and Thirunalasundari T. 2011. Antioxidant potentials of Punica granatum fruit rind extracts. Int J Pharm Pharm Sci. 3: 82–88.

Rasouli H., Yarani R., Pociot F. and Popović-Djordjević J. 2020. Anti-diabetic potential of plant alkaloids: revisiting current findings and future perspectives. Pharmacol Res. 155: 104723. 10.1016/j.phrs.2020.104723

Rauf B., Alysai B., Zahra N., Ahmad S., Sarwar A., Aziz T., et al. 2023. Evaluating the influence of Aloe barbadensis extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats through in vivo and in silico approaches. Acta Biochim Pol. 70(2): 425–433. 10.18388/abp.2020_6705

Riasat A., Jahangeer M., Sarwar A., Saleem Y., Shahzad K., Ur Rahman S., et al. 2023. Scrutinizing the therapeutic response of phyllanthus exmblica’s different doses to restore the immunomodulation potential in immunosuppressed female albino rats. Eur Rev Med Pharmacol Sci. 27(20): 9854–9865. 10.26355/eurrev_202310_34162

Ríos J.-L., Giner R.M., Marín M. and Recio M.C. 2018. A pharmacological update of ellagic acid. Planta Medica. 84: 1068–1093. 10.1055/a-0633-9492

Robbers J.E., Speedie M.K. and Tyler V.E. 1996. Pharmacognosy and pharmacobiotechnology. (No Title).

Szabadfi K., Pinter E., Reglodi D. and Gabriel R. 2014. Neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. Int Rev Cell Mol Biol. 311:1–121. 10.1016/B978-0-12-800179-0.00001-5

Sahi N., Nguyen R. and Santos C. 2020. Loperamide. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2023 Mar 20.

Salama A.A., Ismael N.M. and Bedewy M. 2021. The anti-inflammatory and antiatherogenic in vivo effects of pomegranate peel powder: from waste to medicinal food. J Med Food. 24: 145–150. 10.1089/jmf.2019.0269

Saleem A., Afzal M., Naveed M., Makhdoom S.I., Mazhar M., Aziz T., et al. 2022. HPLC, FTIR and GC-MS analyses of thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules. 27: 8512. 10.3390/molecules27238512

Salmerón-Manzano E., Garrido-Cardenas J.A. and Manzano-Agugliaro F. 2020. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 17: 3376. 10.3390/ijerph17103376

Semwal D.K., Badoni R., Semwal R., Kothiyal S.K., Singh G.J.P. and Rawat U. 2010. The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. J Ethnopharmacol. 132: 369–383. 10.1016/j.jep.2010.08.047

Shaygannia E., Bahmani M., Zamanzad B. and Rafieian-Kopaei M. 2016. A review study on Punica granatum L. J Evid Based Compl Altern Med. 21: 221–227. 10.1177/2156587215598039

Slaoui M. and Fiette L. 2011. Histopathology procedures: from tissue sampling to histopathological evaluation. Drug Safe Eval Methods Protocols. 69–82. 10.1007/978-1-60761-849-2_4

Sreekumar S., Sithul H., Muraleedharan P., Azeez J.M. and Sreeharshan S. 2014. Pomegranate fruit as a rich source of biologically active compounds. BioMed Res Int. 10.1155/2014/686921

Tan S.Y., Wong J.L.M., Sim Y.J., Wong S.S., Elhassan S.A.M., Tan S.H., et al. 2019. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr Clin Res Rev. 13: 364–372. 10.1016/j.dsx.2018.10.008

Tehseen I., Haq T.U., Ilahi I., Khan A.A., Attaullah M., Zamani G.Y., Zaman S. and Ismail I. 2022. Antidiabetic and hepato-renal protective effects of medicinal plants in STZ induced diabetic rats. Braz J Biol. 10(84): e260189. 10.1590/1519-6984.260189

Tunaru S., Althoff T.F., Nüsing R.M., Diener M. and Offermanns S. 2012. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc Nat Acad Sci. 109: 9179–9184. 10.1073/pnas.1201627109

Udeogu C., Ejiofor C. and Nwakulite A. 2019. Effects of Moringa oleifera leaves methanolic extract on alloxan-induced diabetic Albino rats. Asian J Res Med Pharm Sci. 7: 1–8. 10.9734/AJRIMPS/2019/v7i230119

Walker H.K., Hall W.D. and Hurst J.W. 1990. Clinical methods: the history, physical, and laboratory examinations. PMid: 21250045

Waseem M., Naveed M., Rehman S.R., Makhdoom S.I., Aziz T., Alharbi M., Alshammari A. and Alasmari A.F. 2023. Molecular characterization of spa, hld, fmhA, and lukD genes and computational modeling the multidrug resistance of staphylococcus species through callindra harrisii silver nanoparticles. ACS Omega. 8(23): 20920–20936. 10.1021/acsomega.3c01597

Weaver D.C., Mcdaniel M.L. and Lacy P.E. 1978. Alloxan uptake by isolated rat islets of Langerhans. Endocrinology. 102: 1847–1855. 10.1210/endo-102-6-1847

Yağmur N. and Şahin S. 2020. Encapsulation of ellagic acid from pomegranate peels in microalgae optimized by response surface methodology and an investigation of its controlled released under simulated gastrointestinal studies. J Food Sci. 85: 998–1006. 10.1111/1750-3841.15085

Yan H., Peng K.-J., Wang Q.-L., Gu Z.-Y., Lu Y.-Q., Zhao J., et al. 2013. Effect of pomegranate peel polyphenol gel on cutaneous wound healing in alloxan-induced diabetic rats. Chin Med J. 126: 1700–1706. 10.3760/cma.j.issn.0366-6999.20122728

Zawar H., Muhammad J., Rahman S., Tammana I., Sarwar A., Ullah N., et al. 2023. Synthesis of silver nanoparticles by aqueous extraction of Zingiber officinale and their antibacterial activities against selected species. Pol J Chem Technol. 25(3): 23–30. 10.2478/pjct-2023-0021

Zhai X., Zhu C., Zhang Y., Sun J., Alim A. and Yang X. 2018. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr Polym. 202: 461–469. 10.1016/j.carbpol.2018.09.013

Zhang R., Feng C., Luo D., Zhao R., Kannan PR., Yin Y., Iqbal MZ., Hu Y. and Kong X. 2023. Metformin Hydrochloride Significantly Inhibits Rotavirus Infection in Caco2 Cell Line, Intestinal Organoids, and Mice. Pharmaceuticals. 16(9): 1279. 10.3390/ph16091279

Zhang S., Xu H., Yu X., Wu Y. and Sui D. 2017. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp Ther Med. 14(1): 383–390. 10.3892/etm.2017.4475

Zhao S.S., Ma D.X., Zhu Y., Zhao J.H., Zhang Y., Chen J.Q. and Sheng Z.L. 2018. Antidiarrheal effect of bioactivity-guided fractions and bioactive components of pomegranate (Punica granatum L.) peels. Neurogastroenterol Motil. 30: e13364. 10.1111/nmo.13364