Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet: impacts of autoclaving modes and fermentation time on the nutrient content, bioactive compounds, and antioxidant potential

##plugins.themes.bootstrap3.article.main##

Mohammed A. Mohammed
Abu El Gasim A. Yagoub
Pandurangan Subash-Babu
Laila Naif Al-Harbi
Hany M. Yehia
Magdi Osman
Abdullah Al Tamim
Mohammed Yahya
Ghedeir Alshammari

Keywords

Abstract

The study aimed to investigate the effects of mixed-mode autoclaving (MMA; sterilization of flour–water mixture; as control) and single-mode autoclaving (SMA; sterilization of flour and water separately) on the potential of the fermenting microorganism Lactiplantibacillus plantarum ATCC 8014 (L. plantarum), focusing on nutrient content, bioactive compounds, and antioxidant activity in millet flour. Pearl millet (Pennisetum glaucum (L.) R.Br.) flour mixed with water (1:4, w/v) was fermented with L. plantarum (108 colony-forming unit [CFU]/g) in a fermentor at 37°C for 12, 24, 36, 48, 60, and 72 h, with continuous stirring at 120 rpm, follow-ing sterilization in an autoclave (121.1°C; 15 psi; 15 min). SMA and MMA had varied effects on micronutrients and minerals, and fermentation affected them. Fermentation of L. plantarum results in substantially higher glucose production in SMA compared to MMA, whereas the opposite is true for fructose. SMA had higher glu-cose levels and lower fructose levels than MMA. The SMA L. plantarum and MMA-fermented samples showed similar trends in glucose and fructose changes. SMA samples contained higher total phenolic content (TPC) than MMA, while total flavonoid content (TFC) and total tannin content (TTC) remained unchanged. TPC and TFC increased gradually, while TTC decreased, after 72-h L. plantarum fermentation. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging rate in sterilized raw millet flour (0MMA) was lower than in raw millet flour, and it was also lower in SMA than in MMA. The DPPH scavenging rate of 0MMA increased significantly after 12 h of fermentation, reaching its peak at 36 h, with the MMA surpassing SMA in scavenging activity. High-performance liquid chromatography–mass spectrometry (HPLC-MS) analysis detected bioactive substances in SMA- and MMA-fermented millet, with some variations in their nature and levels. Overall, these results indicate that sterilization method and fermentation time are key factors in shaping the nutrient and bioactive compound content of millet flour, highlighting the need to optimize them to develop nutritious, health-promoting fermented millet products.

Abstract 78 | PDF (Inglese) Downloads 38 XML (Inglese) Downloads 8 HTML (Inglese) Downloads 0

Riferimenti bibliografici

Abdalla, A., El Tinay, A., Mohamed, B. and Abdalla, A. 1998. Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chem. 63(2):243–246. https://doi.org/10.1016/S0308-8146(97)00228-8
Acebrón, I., Plaza-Vinuesa, L., De Las Rivas, B., Muñoz, R., Cumella, J., Sánchez-Sancho, F. and Mancheño, J.M. 2017. Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum. BBA Proteins Proteom. 1865(10):1227–1236. https://doi.org/10.1016/j.bbapap.2017.07.007
Adebo, J.A., Njobeh, P.B., Gbashi, S., Oyedeji, A.B., Ogundele, O.M., Oyeyinka, S.A. and Adebo, O.A. 2022. Fermentation of cereals and legumes: impact on nutritional constituents and nutrient bioavailability. Fermentation, 8(2):63. https://doi.org/10.3390/fermentation8020063
Adisa, A.M., Badejo, A.A., Ifesan, B.O.T. and Enujiugha, V.N. 2024. Phenotypic and molecular differentiation of lactic acid bacteria in fonio millet ogi fermentation and their potential as starter cultures. Food Humanity. 2:100230. https://doi.org/10.1016/j.foohum.2024.100230
Agrawal, R. 2024. Fermentation media and industrial sterilization. In: Textbook of Industrial Microbiology. Springer, New York, NY, pp. 87–96. https://doi.org/10.1007/978-981-97-9582-6_6
Aguirre-Garcia, Y.L., Nery-Flores, S.D., Campos-Muzquiz, L.G., Flores-Gallegos, A.C., Palomo-Ligas, L., Ascacio-Valdés, J.A., Sepúlveda-Torres, L. and Rodríguez-Herrera, R. 2024. Lactic acid fermentation in the food industry and bio-preservation of food. Fermentation. 10(3):168. https://doi.org/10.3390/fermentation10030168
Allocati, N., Masulli, M., Di Ilio, C. and De Laurenzi, V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6(1):e1609–e1609. ‏https://doi.org/10.1038/cddis.2014.570
Alshammari, G.M., Mohammed, M.A., Al Tamim, A., Yahya, M.A. and Yagoub, A.E.A. 2025. Changes in nutrients, heavy metals, residual pesticides, bioactive compounds, and anti-oxidant activity following germination and fermentation of Sudanese and Yemeni sorghums. Int J Food Sci Technol. 60(2):vvaf069. https://doi.org/10.1093/ijfood/vvaf069
Amadou, I. 2022. Millet-based functional foods: bio-chemical and bio-functional properties. Functional Foods Book, Chapter 9, page no (303–330). https://doi.org/10.1002/9781119776345.ch9.
Anumudu, C.K., Miri, T. and Onyeaka, H. 2024. Multifunctional applications of lactic acid bacteria: enhancing safety, quality, and nutritional value in foods and fermented beverages. Foods. 13(23):3714. ‏https://doi.org/10.3390/foods13233714
Armenova, N., Tsigoriyna, L., Arsov, A., Petrov, K. and Petrova, P. 2023. Microbial detoxification of residual pesticides in fermented foods: current status and prospects. Foods. 12(6):1163. https://doi.org/10.3390/foods12061163
Arya, P., Vaidya, D. and Gupta, A. 2025. Fermentation-driven bioactive enhancement in cereal grains: mechanisms, nutritional improvements, and functional food applications. Trends Food Sci Technol. Vol.166: 105403. https://doi.org/10.1016/j.tifs.2025.105403
Association of Official Analytical Chemists (AOAC). 2023. The Official Methods of Analysis of AOAC International, 22nd edn. Oxford University Press, Oxford, UK. https://doi.org/10.1093/9780197610145.001.0001
Bajtai, A., Németi, G., Le, T. M., Szakonyi, Z., Péter, A., & Ilisz, I. (2022). Enantiomeric separation of newly synthesized amino, thio, and oxy derivatives of monoterpene lactones, amides, and ester applying polysaccharide-based chiral stationary phases in normal-phase mode. Journal of Chromatography A, 1672, 463050. https://doi.org /10.1016/j.chroma.2022.463050.
Balli, D., Cecchi, L., Pieraccini, G., Venturi, M., Galli, V., Reggio, M., Di Gioia, D., Furlanetto, S., Orlandini, S. and Innocenti, M. 2023. Millet fermented by different combinations of yeasts and lactobacilli: effects on phenolic composition, starch, mineral content and prebiotic activity. Foods. 12(4):748. https://doi.org/10.3390/foods12040748
Balyatanda, S.B., Gowda, N.A.N., Subbiah, J., Chakraborty, S., Prasad, P.V.V. and Siliveru, K. 2024. Physiochemical, bio, thermal, and non-thermal processing of major and minor millets: a comprehensive review on antinutritional and antioxidant properties. Foods. 13(22):3684. https://doi.org/10.3390/foods13223684
Bao, X., Feng, H., Guo, G., Huo, W., Li, Q., Xu, Q., Liu, Q., Wang, C. and Chen, L. 2022. Effects of laccase and lactic acid bacteria on the fermentation quality, nutrient composition, enzymatic hydrolysis, and bacterial community of alfalfa silage. Front Microbiol. 13:1035942. https://doi.org/10.3389/fmicb.2022.1035942
Bi, H., Merchant, A., Gu, J., Li, X., Zhou, X. and Zhang, Q. 2022. CRISPR/Cas9-mediated mutagenesis of abdominal-A and ultrabithorax in the Asian corn borer Ostrinia furnacalis. Insects. 13(4):384. https://doi.org/10.3390/insects13040384
Boutet, S., Barreda, L., Perreau, F., Totozafy, J.C., Mauve, C., Gakiere, B., Delannoy, E., Martin-Magniette, M.L., Monti, A., Lepiniec, L. and Zanetti, F. 2022. Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes. Plant J. 110(1):147–165. https://doi.org/10.1111/tpj.15662
Brooks, H.B., Meier, T.I., Geeganage, S., Fales, K.R., Thrasher, K.J., Konicek, S.A., Spencer, C.D., Thibodeaux, S., Foreman, R.T. and Hui, Y.-H. 2018. Characterization of a novel AICARFT inhibitor which potently elevates ZMP and has anti-tumor activity in murine models. Sci Rep. 8(1):15458. https://doi.org/10.1038/s41598-018-33453-4
Caesar, L.K., Kellogg, J.J., Kvalheim, O.M. and Cech, N.B. 2019. Opportunities and limitations for untargeted mass spectrometry metabolomics to identify biologically active constituents in complex natural product mixtures. J Nat Prod. 82(3):469–484. https://doi.org/10.1021/acs.jnatprod.9b00176
Carciochi, R.A., Dimitrov, K. and Galván D´ Alessandro, L. 2016. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. J Food Sci Technol. 53(11):3978–3985. https://doi.org/10.1007/s13197-016-2393-7
Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., Fischer, B., Pratt, B. and Egertson, J. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnol. 30(10):918–920. https://doi.org/10.1038/nbt.2377
Cheenpracha, S., Park, E.-J., Rostama, B., Pezzuto, J.M. and Chang, L.C. 2010. Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, epimuqubilin A. Marine Drugs. 8(3):429–437. https://doi.org/10.3390/md8030429
Chiodetti, M., Tuccio, M.G. and Carini, E. 2024. Effect of water content on gelatinization functionality of flour from sprouted sorghum. Curr Res Food Sci. 8:100780. https://doi.org/10.1016/j.crfs.2024.100780
Chu, K., Cui, X., Yang, Y., Wu, Q., Liu, R. and Xie, Y. 2025. Effects of pressure cooker treatment-induced protein oxidation of cereals on human gut microbiota using an in vitro fermentation model. Food Res Int. Vol. 220: 117123. https://doi.org/10.1016/j.foodres.2025.117123
Chuwech, M., Rakariyatham, N., Tinoi, J., Suwitchayanon, P. and Chandet, N. 2023. Effect of heat–moisture treatment on crystallinity, digestibility properties, bioactive compounds, and antioxidant activity of purple rice (Oryza sativa L. indica) flour. Processes. 11(3):969. https://doi.org/10.3390/pr11030969
Cui, Y., Wang, M., Zheng, Y., Miao, K. and Qu, X. 2021. The carbohydrate metabolism of Lactiplantibacillus plantarum. Int J Mol Sci. 22(24):13452. https://doi.org/10.3390/ijms222413452
Dangal, A., Tahergorabi, R., Acharya, D.R., Timsina, P., Rai, K., Dahal, S., Acharya, P. and Giuffrè, A.M. 2024. Review on deep-fat fried foods: physical and chemical attributes, and consequences of high consumption. Eur Food Res Technol. 250(6):1537–1550. https://doi.org/10.1007/s00217-024-04482-3
Das, R.S., Tiwari, B.K., Chemat, F. and Garcia-Vaquero, M. 2022. Impact of ultrasound processing on alternative protein systems: protein extraction, nutritional effects and associated challenges. Ultrason Sonochem. 91:106234. ‏https://doi.org/10.1016/j.ultsonch.2022.106234
De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, T. and Weckx, S. 2009. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 26(7):666–675. https://doi.org/10.1016/j.fm.2009.07.012
Djorgbenoo, R., Hu, J., Hu, C. and Sang, S. 2023. Fermented oats as a novel functional food. Nutrients. 15(16):3521. https://doi.org/10.3390/nu15163521
Đorđević, T. M., Šiler-Marinković, S. S., Đurović-Pejčev, R. D., Dimitrijević-Branković, S. I., & Umiljendić, J. S. G. (2013). Efficiencies of Different Methods for Organophosphate Pesticide Residues Determination in Fermented Wheat Substrate. Pesticides and Phytomedicine/Pesticidi i fitomedicina, 28(2). https://doi.org /10.2298/pif.v28i2.3963.
Downes, M., Verdecia, M.A., Roecker, A., Hughes, R., Hogenesch, J.B., Kast-Woelbern, H.R., Bowman, M.E., Ferrer, J.-L., Anisfeld, A.M. and Edwards, P.A. 2003. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell. 11(4):1079–1092. https://doi.org/10.1016/s1097-2765(03)00104-7
Druart, P. and Wulf, O.D. 1993. Activated charcoal catalyses sucrose hydrolysis during autoclaving. Plant Cell Tissue Organ Cult. 32(1). https://doi.org/10.1007/BF00040122.
DrugBank. 2024. Bisibuthiamine. DrugBank accession number DB:13416. https://www.drugbank.ca/drugs/DB13416 (Accessed on: 30 October 2024).
El-Hashash, E.F., Al-Habeeb, A., Bakri, H. and Majjami, A.Y. 2023. A comprehensive review of pearl and small millets: taxonomy, production, breeding and future prospects in Saudi Arabia. Asian J Res Crop Sci. 8(4):151–166. https://doi.org/10.9734/AJRCS/2023/v8i4196
El-Shiekh, R.A., Meselhy, M.R., Elshimy, R., Ibrahim, M.A., Ali, M.E. and Hassanen, E.I. 2024. Plumieride as a novel anti-fungal and anti-inflammatory iridoid against superficial candidiasis in mice. BMC Complement Med Ther. 24(1):224. https://doi.org/10.1186/s12906-024-04508-z
Endalew, H.W., Atlabachew, M., Karavoltsos, S., Sakellari, A., Aslam, M.F., Allen, L., Griffiths, H., Zoumpoulakis, P., Kanellou, A. and Yehuala, T.F. 2024. Effect of fermentation on nutrient composition, antinutrients, and mineral bioaccessibility of finger millet based Injera: a traditional Ethiopian food. Food Res Int. 190:114635. https://doi.org/10.1016/j.foodres.2024.114635
ETHOS UP. (2024). High-performance microwave digestion system . www. milestone.sci.com (Accessed March 3, 2024).
Fan, S., Zhang, C., Luo, T., Wang, J., Tang, Y., Chen, Z. and Yu, L. 2019. Limonin: a review of its pharmacology, toxicity, and pharmacokinetics. Molecules. 24(20):3679. https://doi.org/10.3390/molecules24203679
Faridah, D.N., Silitonga, R.F., Indrasti, D., Afandi, F.A., Jayanegara, A. and Anugerah, M.P. 2022. Verification of autoclaving-cooling treatment to increase the resistant starch contents in food starches based on meta-analysis result. Front Nutr. 9:904700. https://doi.org/10.3389/fnut.2022.904700
Fei, L. and Hao, L. 2024. In vitro and ex vivo antifungal activities of metconazole against the rice blast fungus Pyricularia oryzae. Molecules. 29(6):1353. https://doi.org/10.3390/molecules29061353
Food and Agriculture Organization (FAO). 2021. Production-yield quantities of millets in world + (total) 1994–2021. https://www.fao.org/faostat/en/#data/QCL/visualize (Accessed on: 23 March 2023).
Gabriele, M., Cavallero, A., Tomassi, E., Arouna, N., Árvay, J., Longo, V. and Pucci, L. 2024. Assessment of sourdough fermentation impact on the antioxidant and anti-inflammatory potential of pearl millet from Burkina Faso. Foods. 13(5):704. https://doi.org/10.3390/foods13050704
Giraud, E., Lelong, B. and Raimbault, M. 1991. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl Microbiol Biotechnol. 36(1):96–99. https://doi.org/10.1007/BF00164706
Gleim, S. 2025. Health benefits of millet. https://www.webmd.com/diet/health-benefits-millet (Accessed on: 30 November 2025).
Goudar, G., Manne, M., Sathisha, G., Sharma, P., Mokalla, T.R., Kumar, S.B. and Ziouzenkova, O. 2023. Phenolic, nutritional and molecular interaction study among different millet varieties. Food Chem Adv. 2:100150. https://doi.org/10.1016/j.focha.2022.100150
Guo, L., Peng, Y., Zhao, C., Yang, X., Liu, L. and Wang, R. 2016. Pharmacokinetics of tecomin in rats after intragastric and intravenous administration. Biomed Chromatogr. 30(4):612–617. https://doi.org/10.1002/bmc.3604
Hameed, A., Al-Rashida, M. and Shah, M.R. 2021. α-Tertiary Amines En Route to Natural Products. Elsevier, Amsterdam, the Netherlands. https://doi.org/10.1016B978-0-12-822262-1.00001-9
Han, H., Dye, L. and Mackie, A. 2023. The impact of processing on the release and antioxidant capacity of ferulic acid from wheat: a systematic review. Food Res Int. 164:112371. https://doi.org/10.1016/j.foodres.2022.112371
Han, F.-Y., Song, X.-Y., Chen, J.-J., Yao, G.-D. and Song, S.-J. 2018. Timosaponin AIII: a novel potential anti-tumor compound from Anemarrhena asphodeloides. Steroids. 140:125–130. https://doi.org/10.1016/j.steroids.2018.09.014
Hanson, W., Strid, A., Hallman, A. and Jenkins, J. 2018. Cyfluthrin General Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services, OR. npic.orst.edu/factsheets/cyfluthringen.html.
Hoffmann, J.J., Jolad, S.D., Torrance, S.J., Luzbetak, D.J., Wiedhopf, R.M. and Cole, J.R. 1978. Odoratin and paucin: cytotoxic sesquiterpene lactones from, Baileya pauciradiata (Compositae). J Pharm Sci. 67(11):1633–1634. https://doi.org/10.1002/jps.2600671136
Horvat, D., Šimić, G., Drezner, G., Lalić, A., Ledenčan, T., Tucak, M., Plavšić, H., Andrić, L. and Zdunić, Z. 2020. Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants. 9(6):527. https://doi.org/10.3390/antiox9060527
Hussain, A., Arif, M.R., Ahmed, A., Fiaz, I., Zulfiqar, N., Ali, M.Q., Firdous, N., Fatima, H., Shehzad, A. and Elkhedir, A.E. 2024. Evaluation of leaves, flowers, and seeds of coriander (Coriandrum sativum L.) through microwave drying and ultrasonic-assisted extraction for biologically active components. J Food Proc Preserv. (1):2378604. https://doi.org/10.1155/2024/2378604
Hussain, A., Gorsi, F.I., Ali, M.Q., Yaqub, S., Asif, A., Bibi, B., Arshad, F., Cacciotti, I. and Korma, S.A. 2025. Exploration of underutilized chayote fractions following drying and extraction. Food Chem. 465:142129. https://doi.org/10.1016/j.foodchem.2024.142129
International Organization for Standardization (ISO). 2004. Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Enumeration of Presumptive Bacillus cereus: Colony Count Technique at 30 Degrees C. ISO 7932:2004. ISO, Geneva, Switzerland.
International Organization for Standardization (ISO). 2016. ISO 17034:2016. https://www.iso.org/obp/ui/en/#iso:std:iso:17034:ed-1:v1:en (Accessed on: 25 November 2025).
International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC). 2017. ISO/IEC 17025:2017. https://www.iso.org/obp/ui/en/#iso:std:iso-iec:17025:ed-3:v1:en (Accessed on: 25 November 2025).
Isembart, C., Zimmermann, B., Matić, J., Bolaño Losada, C., Afseth, N.K., Kohler, A., Horn, S.J., Eijsink, V., Chylenski, P. and Shapaval, V. 2025. Comparative analysis of pre-treatment strategies and bacterial strain efficiency for improvement of feather hydrolysis. Microb Cell Fact. 24(1):118. ‏https://doi.org/10.1186/s12934-025-02743-8
Ismael, M., Huang, M. and Zhong, Q. 2024. The bacteriocins produced by lactic acid bacteria and the promising applications in promoting gastrointestinal health. Foods. 13(23):3887. ‏https://doi.org/10.3390/foods13233887
Jan, S., Kumar, K., Yadav, A.N., Ahmed, N., Thakur, P., Chauhan, D., Rizvi, Q. and Dhaliwal, H.S. 2022. Effect of diverse fermentation treatments on nutritional composition, bioactive components, and anti-nutritional factors of finger millet (Eleusine coracana L.). J Appl Biol Biotechnol. 10(1):46–52. https://doi.org/10.7324/JABB.2022.10s107
Janiszewska-Turak, E., Rybak, K., Witrowa-Rajchert, D., Pobiega, K., Wierzbicka, A., Ossowski, S., Sękul, J., Kufel, A., Wiśniewska, A., Trych, U. and Szczepańska-Stolarczyk, J. 2024. Influence of heat treatment and lactic acid fermentation on the physical and chemical properties of pumpkin juice. Molecules. 29(19):4519. ‏https://doi.org/10.3390/molecules29194519
Jayashree, H., Malashree, L., Devaraju, R., Arun Kumar, H., Pushpa, B. and Ramachandra, B. 2024. Sporicidal treatments to produce germinated finger millet. J Sci Res Rep. 30(6):586–592. https://doi.org/10.9734/jsrr/2024/v30i62076
Jeschke, P., Witschel, M., Krämer, W. and Schirmer, U. 2019. Modern Crop Protection Compounds. John Wiley, Hoboken, NJ.
Kalinowska, M., Gołebiewska, E., Zawadzka, M., Choińska, R., Koronkiewicz, K., Piasecka-Jóźwiak, K. and Bujak, M. 2023. Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci Rep. 13(1):19310. https://doi.org/10.1038/s41598-023-46584-0
Karaçoban, İ., Bilgiçli, N. and Yaver, E. 2023. Impact of fermentation, autoclaving and phytase treatment on the antioxidant properties and quality of teff cookies. Food Technol Biotechnol. 61(3):328–338. https://doi.org/10.17113/ftb.61.03.23.8145
Kawai, Y., Kawai, M., Mackenzie, E.S., Dashti, Y., Kepplinger, B., Waldron, K.J. and Errington, J. 2023. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat Commun. 14(1):4123. ‏https://doi.org/10.1038/s41467-023-39723-8

Kemal, M., Teka, T.A., Dibaba, K. and Urugo, M.M. 2025. Effects of processing methods on nutrient and antinutrient composition, techno-functional and antioxidant properties of mungbean (Vigna radiata L.) R. Wilczek varieties. Food Sci Technol (LWT). 222:117663. https://doi.org/10.1016/j.lwt.2025.117663
Khalil, I., Bashir, S., Saeed, K., Alsulami, T., Rafique, H. and Mukonzo, E.K.L. 2025. Phytochemical and structural portrayal of barley and pearl millet through FTIR and SEM. Food Sci Nutr. 13(5):e70120. https://doi.org/10.1002/fsn3.70120
Kim, C.-W. and Choi, K.-C. 2021. Potential roles of iridoid glycosides and their underlying mechanisms against diverse cancer growth and metastasis: do they have an inhibitory effect on cancer progression? Nutrients. 13(9):2974. https://doi.org/10.3390/nu13092974
Kong, C.S., Kim, K.H., Choi, J.S., Kim, J.E., Park, C. and Jeong, J.W. 2014. Salicin, an extract from white willow bark, inhibits angiogenesis by blocking the ROS-ERK pathways. Phytother Res. 28(8):1246–1251. https://doi.org/10.1002/ptr.5126
Krahn, I., Bonder, D., Torregrosa-Barragán, L., Stoppel, D., Krause, J.P., Rosenfeldt, N., Meiswinkel, T.M., Seibold, G.M., Wendisch, V.F. and Lindner, S.N. 2021. Evolving a new efficient mode of fructose utilization for improved bioproduction in Corynebacterium glutamicum. Front Bioeng Biotechnol. 9:669093.‏ https://doi.org/10.3389/fbioe.2021.669093.
Krul, E.S. 2019. Calculation of nitrogen-to-protein conversion factors: A Review with a focus on soy protein. J Am Oil Chem Soc. 96(4):339–364. https://doi.org/10.1002/aocs.12196
Kumar, R., Khan, M. and Prasad, M. 2019. Solasodine: a perspective on their roles in health and disease. Res J Pharm Technol. 12(5):2571–2576. https://doi.org/10.5958/0974-360X.2019.00432.3
Li, W., Yin, X., Yan, Y., Liu, C. and Li, G. 2023. Kurarinone attenuates hydrogen peroxide-induced oxidative stress and apoptosis through activating the PI3K/Akt signaling by upregulating IGF1 expression in human ovarian granulosa cells. Environ Toxicol. 38(1):28–38. https://doi.org/10.1002/tox.23659
Liangyu, L.I., Yang, L.I.N.G., Tianfeng, H.E., Chaoyang, L.I. and Rong-an, C.A.O. 2023. Analysis of polyphenols in millet and processing effects on antioxidant activity. Food Sci Technol.Vol.43:1-8.ISSN.1678-457X. https://doi.org/10.5327/fst.129722
Maidana, L., de Souza, M., & Bracarense, A. P. F. (2022). Lactobacillus plantarum and deoxynivalenol detoxification: A concise review. Journal of Food Protection, 85(12), 1815-1823. https://doi.org /10.4315/JFP-22-077.
Maidana, L., Gerez, J., Hohmann, M., Verri Jr, W., & Bracarense, A. (2021). Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets. Toxicon, 203, 12-21. https://doi.org /10.1016/j.toxicon.2021.09.023.
Mann, A., Kiefer, M. and Leuenberger, H. 2001. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization. J Pharm Sci. 90(3):275–287. https://doi.org/10.1002/1520-6017(200103)90:3<275::aid-jps3>3.0.co;2-i
Martinez, K.A., Kitko, R.D., Mershon, J.P., Adcox, H.E., Malek, K.A., Berkmen, M.B. and Slonczewski, J.L. 2012. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. Appl Environ Microbiol. 78(10):3706–3714. https://doi.org/10.1128/AEM.00354-12
McNulty, J., Krishnamoorthy, V., Amoroso, D. and Moser, M. 2015. Tris(3-hydroxypropyl) phosphine (THPP): a mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides. Bioorg Med Chemy Lett. 25(19):4114–4117. https://doi.org/10.1016/j.bmcl.2015.08.027
MedChemExpress. 2024. Bisibuthiamine. Accession number: MCE:HY-B2229.CAS No:(3286-46-2). 03-01-2024
https://www.medchemexpress.com/Sulbutiamine.htmLsrsltid=AfmBOooMm7cvr5vII0uictLfB6f_aEDaWFmjW4KOcZVthULcT4ff6Ed.
McNulty, J., Krishnamoorthy, V., Amoroso, D. and Moser, M. 2015. Tris(3-hydroxypropyl) phosphine (THPP): a mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides. Bioorg Med Chemy Lett. 25(19):4114–4117. https://doi.org/10.1016/j.bmcl.2015.08.027
Melini, F., Melini, V., Luziatelli, F., Ficca, A.G. and Ruzzi, M. 2019. Health-promoting components in fermented foods: an up-to-date systematic review. Nutrients. 11(5):1189. https://doi.org/10.3390/nu11051189
Ming, G.-x., Liu, J.-y., Wu, Y.-h., Li, L.-y., Ma, X.-y., Liu, P., Pan, Y.-p., He, X.-n. and Li, Y.-h. 2024. Strictosamide promotes wound healing through activation of the PI3K/AKT pathway. Heliyon. 10(9):1-17. https://doi.org/10.1016/j.heliyon.2024.e30169.
Mititelu, M., Neacșu, S.M., Busnatu, Ș.S., Scafa-Udriște, A., Andronic, O., Lăcraru, A.E., Ioniță-Mîndrican, C.B., Lupuliasa, D., Negrei, C. and Olteanu, G. 2025. Assessing heavy metal contamination in food: implications for human health and environmental safety. Toxics. 13(5):333. https://doi.org/10.3390/toxics13050333
Mohammed, R.S.H. 2025. A Comparative study to evaluate the results of skin pigmentation resulting from thigh friction (meta-analysis). Cent Asian J Med Nat Sci. 6(4):1503–1511. https://doi.org/10.17605/cajmns.v6i4.2869
Mohapatra, D., Nickhil, C., Kar, A., Sharma, Y., Deshpande, S.S., Tripathi, M.K. and Haromuchadi, S.R. 2024. Impact of LAB fermentation on the nutrient content, amino acid profile, and estimated glycemic index of sorghum, pearl millet, and kodo millet. Front Biosci Elite. 16(2):18. https://doi.org/10.31083/j.fbe1602018
Mohiuddin, S.G., Ghosh, S., Ngo, H.G., Sensenbach, S., Karki, P., Dewangan, N.K., Angardi, V. and Orman, M.A. 2021. Cellular self-digestion and persistence in bacteria. Microorganisms. 9(11):2269. ‏https://doi.org/10.3390/microorganisms9112269
Moiseenko, K.V., Glazunova, O.A. and Fedorova, T.V. 2024. Fermentation of rice, oat, and wheat flour by pure cultures of common starter lactic acid bacteria: growth dynamics, sensory evaluation, and functional properties. Foods. 13(15):2414. https://doi.org/10.3390/foods13152414
Mouhoubi, K., Boulekbache-Makhlouf, L., Madani, K., Freidja, M.L., Silva, A.M. and Cardoso, S.M. 2023. Microwave-assisted extraction optimization and conventional extraction of phenolic compounds from coriander leaves: UHPLC characterization and antioxidant activity. Nor Afr J Food Nutr Res. 7(15):69–83. https://doi.org/10.51745/najfnr.7.15.69-83
Mudau, M. and Adebo, O.A. 2025. Effect of traditional and novel processing technologies on the thermo-pasting, microstructural, nutritional, and antioxidant properties of finger millet and Bambara groundnut flours. Int J Food Sci Technol. 60(1):vvae037. https://doi.org/10.1093/ijfood/vvae037
Mutshinyani, M., Mashau, M.E. and Jideani, A.I.O. 2020. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: effects of spontaneous fermentation. Int J Food Prop. 23(1):1692–1710. https://doi.org/10.1080/10942912.2020.1825485
Ntsamo, T.M.B., Mohammadou, B.A., Sokamte, A.T., Njintang, N.Y. and Tatsadjieu, L.N. 2020. Effect of fermentation using Lactobacillus plantarum A6 on the physicochemical and functional properties of precooked Sorghum bicolor and Voandzeia subterranea blended flour. Int J Food Sci. 2020(1):9234083. https://doi.org/10.1155/2020/9234083
Ogodo, A.C., Ugbogu, O.C., Onyeagba, R.A. and Okereke, H.C. 2019. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chem Biol Technol Agric. 6(1):1–9. https://doi.org/10.1186/s40538-019-0145-4
Olmeda, I., Casino, P., Collins, R.E., Sendra, R., Callejon, S., Huesa, J., Soares, A.S., Ferrer, S. and Pardo, I. 2021. Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Microb Biotechnol. 14(3):1026–1043. https://doi.org/10.1111/1751-7915.13751
Omeje, K.O., Ezema, B.O., Okonkwo, F., Onyishi, N.C., Ozioko, J., Rasaq, W.A., Sardo, G. and Okpala, C.O.R. 2021. Quantification of heavy metals and pesticide residues in widely consumed Nigerian food crops using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Toxins. 13(12):870. https://doi.org/10.3390/toxins13120870
Paramithiotis, S. 2025. Lactiplantibacillus plantarum, the integral member of vegetable fermentations. Appl Biosci. 4(1):7. ‏https://doi.org/10.3390/applbiosci4010007
Paventi, G., Di Martino, C., Coppola, F. and Iorizzo, M. 2025. β-glucosidase activity of Lactiplantibacillus plantarum: a key player in food fermentation and human health. Foods. 14(9):1451. https://doi.org/10.3390/foods14091451
Paventi, G., Di Martino, C., Crawford Jr, T.W. and Iorizzo, M. 2024. Enzymatic activities of Lactiplantibacillus plantarum: technological and functional role in food processing and human nutrition. Food Biosci. 61:104944. https://doi.org/10.1016/j.fbio.2024.104944
Pehrsson, P., Patterson, K., Haytowitz, D. and Phillips, K. 2015. Total carbohydrate determinations in USDA’s National Nutrient Database for standard reference. FASEB J. 29(S1): 740-6.https://doi.org/10.1096/fasebj.29.1_supplement.740.6
Pontonio, E., Dingeo, C., Di Cagno, R., Blandino, M., Gobbetti, M. and Rizzello, C.G. 2020. Brans from hull-less barley, emmer and pigmented wheat varieties: from by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. Int J Food Microbiol. 313:108384. https://doi.org/10.1016/j.ijfoodmicro.2019.108384
Popoola, O.O. 2022. Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measure Food. 6:100028. https://doi.org/10.1016/j.meafoo.2022.100028
Popova-Krumova, P., Danova, S., Atanasova, N. and Yankov, D. 2024. Lactic acid production by Lactiplantibacillus plantarum AC 11S—kinetics and modeling. Microorganisms. 2024(12):739. https://doi.org/10.3390/microorganisms12040739
PubChem National Center for Biotechnology Information (NCBI). 2004. PubChem compound summary for CID 440649, 3-Carboxy-1-hydroxypropylthiamine diphosphate. https://pubchem.ncbi.nlm.nih.gov/compound/3-Carboxy-1-hydroxypropylthiamine-diphosphate (Accessed on: 21 March 2025).
PubChem National Center for Biotechnology Information (NCBI). 2005. PubChem compound summary for CID 441107, 1,3,10,11,12-Pentahydroxy-6-methyltetracene-2-carboxamide. https://pubchem.ncbi.nlm.nih.gov/compound/441107 (Accessed on: 21 February 2025).
PubChem National Center for Biotechnology Information (NCBI). 2012. PubChem compound summary for CID 56927995, 7beta-Hydroxytaxusin. https://pubchem.ncbi.nlm.nih.gov/compound/7beta-Hydroxytaxusin (Accessed on: 2 March 2025).
PubChem National Center for Biotechnology Information (NCBI). 2015. PubChem compound summary for CID 102232250, beta-Geranylfarnesene. https://pubchem.ncbi.nlm.nih.gov/compound/beta-Geranylfarnesene (Accessed on: 3 March 2025).
Pulido-Mateos, E.C., Lessard-Lord, J., Desjardins, Y. and Roy, D. 2024. Lactiplantibacillus plantarum interstrain variability in the production of bioactive phenolic metabolites from Flavan-3-ols. J Agric Food Chem. 72(39):21677–21689. https://doi.org/10.1021/acs.jafc.4c07890
Quan, Q., Liu, W., Guo, J., Ye, M., & Zhang, J. (2022). Effect of six lactic acid bacteria strains on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. Foods, 11(13), 1920. https://doi.org /10.3390/foods11131920.
Rahman, M.J., Malunga, L.N., Eskin, M., Eck, P., Thandapilly, S.J. and Thiyam-Hollander, U. 2021. Valorization of heat-treated brewers' spent grain through the identification of bioactive phenolics by UPLC-PDA and evaluation of their antioxidant activities. Front Nutr. 8:634519. https://doi.org/10.3389/fnut.2021.634519
Rico, D., Villaverde, A., Martinez-Villaluenga, C., Gutierrez, A.L., Caballero, P.A., Ronda, F., Peñas, E., Frias, J. and Martin Diana, A.B. 2020. Application of autoclave treatment for development of a natural wheat bran antioxidant ingredient. Foods. 9(6):781. ‏https://doi.org/10.3390/foods9060781
Rodrigues, C.I., Marta, L., Maia, R., Miranda, M., Ribeirinho, M. and Máguas, C. 2007. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J Food Comp Anal. 20(5):440–448. https://doi.org/10.1016/j.jfca.2006.08.005
Sakhare, P.S. 2018. A Study of Efficacy and Safety of Methotrexate versus Azathioprine in Psoriasis. Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India.
Șerban, L.R., Păucean, A., Chiș, M.S., Pop, C.R., Man, S.M., Pușcaș, A., Ranga, F., Socaci, S.A., Alexa, E. and Berbecea, A. 2023. Metabolic profile of einkorn, spelt, emmer ancient wheat species sourdough fermented with strain of Lactiplantibacillus plantarum ATCC 8014. Foods. 12(5):1096. https://doi.org/10.3390/foods12051096
Șerban, L.R., Păucean, A., Man, S.M., Chiş, M.S. and Mureşan, V. 2021. Ancient wheat species: biochemical profile and impact on sourdough bread characteristics—a review. Processes. 9(11):2008. https://doi.org/10.3390/pr9112008
Shashank, D., Rajendra, S. and Mistry, A. 2017. An overview of phytoconstituents and pharmacological activities of celastrus paniculatus willd. J Pharm Res. 16(4):307–313. https://doi.org/10.18579/jpcrkc/2017/16/4/119582
Sidari, R., Martorana, A., Zappia, C., Mincione, A. and Giuffrè, A.M. 2020. Persistence and effect of a multistrain starter culture on antioxidant and rheological properties of novel wheat sourdoughs and bread. Foods. 9(9):1258. https://doi.org/10.3390/foods9091258
Sionek, B., Szydłowska, A., Trząskowska, M. and Kołożyn-Krajewska, D. 2024. The impact of physicochemical conditions on lactic acid bacteria survival in food products. Fermentation. 10(6):298. ‏https://doi.org/10.3390/fermentation10060298
Śliżewska, K. and Chlebicz-Wójcik, A. 2020. Growth kinetics of probiotic Lactobacillus strains in the alternative, cost-efficient semi-solid fermentation medium. Biology. 9(12):423. https://doi.org/10.3390/biology9120423
Solmaz, B., Levent, H. and Şahin, N. 2025. The influence of various cereal brans, stabilized through hot air, microwave, and autoclave methods, on the physicochemical properties of cookies. Food Sci Nutr. 13(6):e70328.‏ https://doi.org/10.1002/fsn3.70328
Srivastava, U., Saini, P. and Singh, A. 2024. Synergistic enhancement of iron, folate, and antioxidant properties in pearl millet via RSM-optimized probiotic fermentation with Lactiplantibacillus plantarum. Measure Food. 13:100137. https://doi.org/10.1016/j.meafoo.2024.100137
Srivastava, U., Saini, P., Singh, A., Singh, Z., Ahmed, M. and Iqbal, U. 2021. Enhancement in iron and folate by optimizing fermentation of barnyard millet by Lactobacillus plantarum using response surface methodology (RSM). Plant Arch. 21(1):09725210. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.138
Sultana, N. and Ata, A. 2008. Oleanolic acid and related derivatives as medicinally important compounds. J Enzy Inhib Med Chem. 23(6):739–756. https://doi.org/10.1080/14756360701633187
Suma, F. and Urooj, A. 2017. Impact of household processing methods on the nutritional characteristics of pearl millet (Pennisetum typhoideum): a review. J Food Proc Technol. 4(1):28–32. https://doi.org/10.15406/mojfpt.2017.04.00082
Sun, X., Cheng, H., Li, L. and Jin, W. 2017. X500R QTOF system with SWATH® acquisition for pesticide residue screening in fruits and vegetables. Food Environ. Document number: RUO-MKT-02-5390-A.Page No: P1-P5.
Sun, J., Niu, H., Li, B., Wang, Y., Chen, X. and Han, X. 2025. Calcium and magnesium improve Lactobacillus bulgaricus survival via membrane and metabolic protection. Food Sci Technol (LWT). 234:118584. https://doi.org/10.1016/j.lwt.2025.118584
Talmon, M., Bosso, L., Quaregna, M., Lopatriello, A., Rossi, S., Gavioli, D., Marotta, P., Caprioglio, D., Boldorini, R. and Miggiano, R. 2020. Anti-inflammatory activity of absinthin and derivatives in human bronchoepithelial cells. J Nat Prod. 83(6):1740–1750. https://doi.org/10.1021/acs.jnatprod.9b00685
Tomar, T., Sachdeva, A., Dutta, J., Al Tawaha, A.R.M., Karnwal, A., Malik, T. and Selvaraj, M. 2025. Fermentation dynamics of millet beverages: microbial interactions, nutritional enhancements, and health implications. Food Chem. X:102199. https://doi.org/10.1016/j.fochx.2025.102199
Üçok, G. and Sert, D. 2020. Growth kinetics and biomass characteristics of Lactobacillus plantarum L14 isolated from sourdough: effect of fermentation time on dough machinability. Food Sci Technol (LWT). 129:109516. https://doi.org/10.1016/j.lwt.2020.109516
Udensi, E., Arisa, N. and Ikpa, E. 2010. Effects of soaking and boiling and autoclaving on the nutritional quality of Mucuna flagellipes (“ukpo”). Afr J Biochem Res. 4(2):47–50. http://www.academicjournals.org/AJBR
Uwaegbute, A., Iroegbu, C. and Eke, O. 2000. Chemical and sensory evaluation of germinated cowpeas (Vigna unguiculata) and their products. Food Chem. 68(2):141–146. https://doi.org/10.1016/S0308-8146(99)00134-X
Verni, M., De Mastro, G., De Cillis, F., Gobbetti, M. and Rizzello, C.G. 2019. Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Res Int. 125:108571. https://doi.org/10.1016/j.foodres.2019.108571
Wang, H., Fu, Y., Zhao, Q., Hou, D., Yang, X., Bai, S., Diao, X., Xue, Y. and Shen, Q. 2022. Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Front Nutr. 9:780499. https://doi.org/10.3389/fnut.2022.780499
Wei, C., Zhang, C., Gao, Y., Yu, L., Zhao, J., Zhang, H., Chen, W. and Tian, F. 2022. Insights into the metabolic response of Lactiplantibacillus plantarum CCFM1287 upon patulin exposure. Int J Mol Sci. 23(19):11652. https://doi.org/10.3390/ijms231911652
Weiß, K. and Alt, M. 2017. Determination of single sugars, including inulin, in plants and feed materials by high-performance liquid chromatography and refraction index detection. Fermentation. 3(3):36. https://doi.org/10.3390/fermentation3030036
Woo, S.-H., Shin, Y.-J., Jeong, H.-M., Kim, J.-S., Ko, D.-S., Hong, J. S., Choi, H.-D. and Shim, J.-H. 2020. Effects of maltogenic amylase from Lactobacillus plantarum on retrogradation of bread. J Cereal Sci. 93:102976. https://doi.org/10.1016/j.jcs.2020.102976
Xiang, H., Sun-Waterhouse, D., Waterhouse, G.I., Cui, C. and Ruan, Z. 2019. Fermentation-enabled wellness foods: a fresh perspective. Food Sci Human Wellness. 8(3):203–243. https://doi.org/10.1016/j.fshw.2019.08.003
Yadav, J.S.S., Yan, S., Ajila, C.M., Bezawada, J., Tyagi, R.D. and Surampalli, R.Y. 2016. Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey. Food Bioprod Proc. 99:156–165. https://doi.org/10.1016/j.fbp.2016.04.012
Yan, J., Cai, M., Zang, C., Li, W., Liu, Z., Li, X., Gao, Y. and Qi, Y. 2024. The natural sesquiterpene lactone inulicin suppresses the production of pro-inflammatory mediators via inhibiting NF-κB and AP-1 pathways in LPS-activated macrophages. Immunopharmacol Immunotoxicol. 46(5):583–593. https://doi.org/10.1080/08923973.2024.2384899
Yang, F., Chen, C., Ni, D., Yang, Y., Tian, J., Li, Y., Chen, S., Ye, X. and Wang, L. 2023. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: a review. Foods. 12(17):3315. https://doi.org/10.3390/foods12173315
Yang, X., Hong, J., Wang, L., Cai, C., Mo, H., Wang, J., Fang, X. and Liao, Z. 2024. Effect of lactic acid bacteria fermentation on plant-based products. Fermentation. 10(1):48. https://doi.org/10.3390/fermentation10010048
Yehuala, T.F., Atlabachew, M., Aslam, M.F., Allen, L., Griffith, H., Ward, J.L., Shewry, P.R., Kanellou, A., Gichohi‐Wainaina, W., Endalew, H.W. and Abera, M.K. 2025. Fermentation kinetics and changes in levels of antinutrients in Pearl millet and Pearl millet–maize composite dough recipes used to prepare injera. Food Sci Nutr. 13(7):e70598. https://doi.org/10.1002/fsn3.70598
Yépez, A., Russo, P., Spano, G., Khomenko, I., Biasioli, F., Capozzi, V. and Aznar, R. 2019. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol. 77:61–68. https://doi.org/10.1016/j.fm.2018.08.008
Yoon, J.H., Oh, M.S. and Lee, S.Y. 2024. Effectiveness of organic acids for inactivating pathogenic bacteria inoculated in laboratory media and foods: an updated minireview. Food Sci Biotechnol. 33(12):2715–2728. ‏https://doi.org/10.1007/s10068-024-01618-9
Yousaf, L., Hou, D., Liaqat, H. and Shen, Q. 2021. Millet: a review of its nutritional and functional changes during processing. Food Res Int. 142:110197. https://doi.org/10.1016/j.foodres.2021.110197
Yuca, H. 2022. Capsicum annuum L. in Novel Drug Targets with Traditional Herbal Medicines: Scientific and Clinical Evidence. Springer, New York, NY, pp. 95–108. https://doi.org/10.1007/978-3-031-07753-1_7
Zdziobek, P., Jodłowski, G.S. and Strzelec, E.A. 2023. Biopreservation and bioactivation juice from waste broccoli with Lactiplantibacillus plantarum. Molecules. 28(12):4594. https://doi.org/10.3390/molecules28124594
Zhang, R., Khan, S.A., Chi, J., Wei, Z., Zhang, Y., Deng, Y., Liu, L. and Zhang, M. 2017. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Food Sci Technol (LWT). 88:64–70. https://doi.org/10.1016/j.lwt.2017.09.042
Zhao, X., Liang, Q., Song, X. and Zhang, Y. 2023. Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of EPS gene clusters. Front Microbiol. 14:1146566. https://doi.org/10.3389/fmicb.2023.1146566
Zhao, C., Shen, J., Cai, X., Zhao, Y., Meng, X., Liu, Z. and Qian, Y. 2025. A novel bacteriostatic system for seafood preservation: impact of plantaricin Bac-329 on bacterial cell wall integrity driven by lactic acid levels. Food Cont. 176:111331. ‏https://doi.org/10.1016/j.foodcont.2025.111331
Zhao, Z.-M., Wang, L. and Chen, H.-Z. 2015. A novel steam explosion sterilization improving solid-state fermentation performance. Biores Technol. 192:547–555. https://doi.org/10.1016/j.biortech.2015.05.099
Zheng, R. and Pan, F. 2019. On-line tendency control of dissolved oxygen concentration during aerobic fed-batch fermentations. Appl Sci. 9:5232. https://doi.org/10.3390/app9235232
Zheng, H., Sun, Y., Zheng, T., Zeng, Y., Fu, L., Zhou, T., Jia, F., Xu, Y., He, K. and Yang, Y. 2023. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus (Nelumbo) leaves dietary fiber. Front Nutr. 10:1064662. https://doi.org/10.3389/fnut.2023.1064662
Zhou, M., Fakayode, O.A., Ren, M., Li, H., Liang, J., Yagoub, A.E.A., Fan, Z. and Zhou, C. 2023. Laccase-catalyzed lignin depolymerization in deep eutectic solvents: challenges and prospects. Biores Bioproc. 10(1):21. https://doi.org/10.1186/s40643-023-00640-9