Metallo-chlorophyll derivatives as food colorant: Intact chloroplasts from spinach leaf recovered by enzyme-assisted extraction
Main Article Content
Keywords
Food pigment; green colorant; copper; zinc; meringues
Abstract
This study presents tailored enzyme-assisted extraction (EAE) to recover intact chloroplasts from spinach, using a synergistic combination of metal ions, in comparison to traditional chlorophyll (Chl) solvent extraction. The content of pigment in intact chloroplasts recovered by EAE is affected by time and metal dose; the highest concentration is achieved using 165 ppm of metals for 2 h. With regard to solvent extraction, the amount of intact chloroplasts is remarkably lower and affected only by process time. Colorimetric analysis confirms a good correlation between the concentration of metal ions and greenness. Applied to meringues, the Chl-based extract (<3% w/w) enhances color without affecting flavor, fragrance, and mouthfeel.
References
Artar, E., Olgunoglu, M.P., Olgunoglu, I.A. 2024. Evaluation of heavy metal accumulation and associated human health risks in three commercial marine fish species from the Aegean Sea, Türkiye. IJFS. 36(2): 136–149. https://doi.org/10.15586/ijfs.v36i2.2474
Ašimović, Z., Čengić, L., Hodžić, J., Murtić, S. 2016. Spectrophotometric determination of total chlorophyll content in fresh vegetables. God. LXI Broj. 66: 104–108.
Berhe, M., You, J., Dossa, K., Li, D., Zhou, R., Zhang, Y., Wang, L. 2024. Examining chlorophyll extraction methods in sesame genotypes: Uncovering leaf coloration effects and anatomy variations. Plants. 13(12): 1589. https://www.mdpi.com/2223-7747/13/12/1589#
Chasapis, C.T., Ntoupa, P.S.A., Spiliopoulou, C.A., Stefanidou, M.E. 2020. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 94: 1443–1460. https://doi.org/10.1007/s00204-020-02702-9
Cuccolini, S., Aldini, A., Visai, L., Daglia, M., Ferrari, D. 2013. Environmentally friendly lycopene purification from tomato peel waste: Enzymatic assisted aqueous extraction. JAFC. 61(8): 1646–1651. https://doi.org/10.1021/jf3027815
Ebrahimi, P., Shokramraji, Z., Tavakkoli, S., Mihaylova, D., Lante, A. 2023. Chlorophylls as natural bioactive compounds existing in food by-products: A critical review. Plants. 12(7): 1533. https://doi.org/10.3390/plants12071533
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2014. Scientific opinion on dietary reference values for zinc. EFSA J. 12(10): 3844. https://doi.org/10.2903/j.efsa.2014.3844
EFSA Scientific Committee, More, S.J., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T. I. ..., Leblanc, J.C. 2023. Re‐evaluation of the existing health‐based guidance values for copper and exposure assessment from all sources. EFSA J. 21(1): e07728. https://doi.org/10.2903/j.efsa.2023.7728
Escobedo-Monge, M.F., Barrado, E., Parodi-Román, J., Escobedo-Monge, M.A., Torres-Hinojal, M.C., Marugán-Miguelsanz, J.M. 2023. Copper/zinc ratio in childhood and adolescence: A review. Metabolites. 13(1): 82. https://www.mdpi.com/2218-1989/13/1/82#
Gedi, M.A., Briars, R., Yuseli, F., Zainol, N., Darwish, R., Salter, A.M., Gray, D.A. 2017. Component analysis of nutritionally rich chloroplasts: Recovery from conventional and unconventional green plant species. J. Food Sci. 54:2746–2757. https://doi:10.1007/s13197-017-2711-8
Harwood, J.L. 1998. Involvement of chloroplast lipids in the reaction of plants submitted to stress. Lipids in photosynthesis. 6: 287–302. https://doi.org/10.1007/0-306-48087-5
Henriques, F.S. 2001. Loss of blade photosynthetic area and of chloroplasts' photochemical capacity account for reduced CO2 assimilation rates in zinc-deficient sugar beet leaves. J. Plant Physiol. 158(7): 915–919. https://doi.org/10.1078/0176-1617-00274
Hsiao, C.J., Lin, J.F., Wen, H.Y., Lin, Y.M., Yang, C.H., Huang, K.S., Shaw, J.F. 2020. Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chem. 306: 125300. https://doi.org/10.1016/j.foodchem.2019.125300
Hu, Y., Sun, H., Mu, T. 2022. Effects of different Zn2+ concentrations and high hydrostatic pressures (HHP) on chlorophyll stability. Foods. 11(14): 2129. https://www.mdpi.com/2304-8158/11/14/2129#
Indrasti, D., Andarwulan, N., Purnomo, E.H., Wulandari, N.U.R. 2018. Stability of chlorophyll as natural colorant: A review for suji (Dracaena Angustifolia Roxb.) leaves’ case. Curr. Res. Nutr. Food Sci. 6(3): 609–625. https://dx.doi.org/10.12944/CRNFSJ.6.3.04
Kwartiningsih, E., Ramadhani, A.N., Putri, N.G.A., Damara, V.C.J. 2021. Chlorophyll extraction methods review and chlorophyll stability of katuk leaves (Sauropus androgynous). Journal of Physics (Conference Series). 1858(1): 012015.. https://doi 10.1088/1742-6596/1858/1/012015
Lombardelli, C., Benucci, I., Marco, E. 2021. Novel food colorants from tomatoes: Stability of carotenoid-containing chromoplasts under different storage conditions. LWT. 140: 110725. https://doi.org/10.1016/j.lwt.2020.110725
Lombardelli, C., Liburdi, K., Benucci, I., Esti, M. 2020. Tailored and synergistic enzyme-assisted extraction of carotenoid-containing chromoplasts from tomatoes. Food Bioprod. 121: 43–53. https://doi.org/10.1016/j.fbp.2020.01.014
Lombardelli, C., Mazzocchi, C., Benucci, I., Esti, M. 2024. Stabilized chlorophyll‐based food colorants from spinach: Kinetics of a tailored enzymatic extraction. J. Food Sci. 89(9): 5270–5279. https://doi.org/10.1111/1750-3841.17269
Managa, M.G., Mpai, S., Remize, F., Garcia, C. and Sivakumar, D. 2020. Impact of moist cooking methods on colour, anti-nutritive compounds and phenolic metabolites in African nightshade (Solanum retroflexum Dun.). Food Chem. 325: 126805. https://doi.org/10.1016/j.foodchem.2020.126805
Matuszczak, M., Kiljańczyk, A., Marciniak, W., Derkacz, R., Stempa, K., Baszuk, P., ... Lubiński, J. 2024. Antioxidant properties of zinc and copper—blood zinc-to copper-ratio as a marker of cancer risk BRCA1 mutation carriers. Antioxidants. 13(7): 841. https://www.mdpi.com/2076-3921/13/7/841#
Mazzocchi, C., Benucci, I., Lombardelli, C., Esti, M. 2023. Enzyme-assisted extraction for the recovery of food-grade chlorophyll-based green colorant. Foods. 12(18): 3440. https://www.mdpi.com/2304-8158/12/18/3440#
Miazek, K. and Ledakowicz, S. 2013. Chlorophyll extraction from leaves, needles and microalgae: A kinetic approach. IJABE. 6(2): 107–115.
Osredkar, J. and Sustar, N. 2011. Copper and zinc, biological role and significance of copper/zinc imbalance. J. Clin. Toxicol. 3(2161): 0495.
Schwartz, S.J. and Lorenzo, T.V. 1990. Chlorophylls in foods. Crit. Rev. Food Sci. Nutr. 29(1): 1–17. https://doi.org/10.1080/10408399009527511
Seigneurin-Berny, D., Salvi, D., Dorne, A.J., Joyard, J., Rolland, N. 2008. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. PPB. 46(11): 951–955. https://doi.org/10.1016/j.plaphy.2008.06.009
Senklang, P. and Anprung, P. 2010. Optimizing enzymatic extraction of Zn–chlorophyll derivatives from pandan leaf using response surface methodology. J. Food Process. Preserv. 34(5): 759–776. https://doi.org/10.1111/j.1745-4549.2009.00393.x
Staehelin, L.A. 2003. Chloroplast structure: From chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76: 185–196. https://doi.org/10.1023/A:1024994525586
Taghavi, T., Patel, H., Rafie, R. 2023. Extraction solvents affect anthocyanin yield, color, and profile of strawberries. Plants. 12(9): 1833. 10.3390/plants12091833
Viera, I., Pérez-Gálvez, A., Roca, M. 2019. Green natural colorants. Molecules. 24(1): 154. https://www.mdpi.com/1420-3049/24/1/154#
Watts, D.L. 2010. HTMA mineral ratios. A brief discussion of their clinical importance. Trace Elem. Med. Biol. 21: 1–3.
Yüceer, M. and Caner, C. 2021. Effects of protease-hydrolyzed egg white on the meringue batter properties and meringue textural and sensory properties during storage. Int. J. Gastron. Food Sci. 25: 100409. https://doi.org/10.1016/j.ijgfs.2021.100409
Zheng, Y., Shi, J., Pan, Z., Cheng, Y., Zhang, Y., Li, N. 2014. Effect of heat treatment, pH, sugar concentration, and metal ion addition on green color retention in homogenized puree of Thompson seedless grape. LWT. 55(2): 595–603. https://doi.org/10.1016/j.lwt.2013.10.011