Collagen extracts from blue cannonball jellyfish (Stomolophus meleagris): Antioxidant properties, chemical structure, and proteomic identification

Main Article Content

Blanca del Solo Villalba-Urquidy https://orcid.org/0009-0009-1935-4566
Wilfrido Torres-Arreola https://orcid.org/0000-0003-2186-4329
Carmen Lizette Del Toro-Sánchez https://orcid.org/0000-0001-7029-7741
Isabel Medina https://orcid.org/0000-0002-1854-3359
Armando Burgos-Hernández https://orcid.org/0000-0003-2082-8190
Josafat Marina Ezquerra Brauer https://orcid.org/0000-0001-6838-4395
Hisila del Carmen Santacruz-Ortega https://orcid.org/0000-0002-7123-8791

Keywords

antioxidant; collagen; jellyfish; proteins; proteomic

Abstract

The demand for jellyfish is increasing mainly because of its health benefits. This study focuses on extracting and characterizing pepsin-soluble collagen extracts from blue cannonball jellyfish (Stomolophus meleagris) mesoglea. Jellyfish mesoglea’s amino acids were analyzed, and collagen extracts were obtained using pepsin (24 h, 4°C) and then characterized. Collagen extracts contain high amounts of glycine and hydroxyproline. The extracts obtained in this study exhibited electrophoretic bands corresponding to collagen “a” and “b” chains, and experienced denaturation at 23.9ºC and an enthalpy change of 0.078 J/g. The Fourier transform infrared spectra exhibited peaks associated with specific collagen tripeptides, and the proton nuclear magnetic resonance spectra showed the characteristic resonance of collagen-like triple helices. Proteomic studies identified the presence of actin, myosin, and collagen type IV. The collagen extracts exhibited higher in vitro ability to trap free radicals, reduce ferric power, and inhibit erythrocyte homolysis than commercial marine fish collagen. The results presented in this paper show the properties of collagen extracts, highlighting their potential application as an antioxidant or a supplement in the food industry.

Abstract 0 | Online PDF Downloads 0

References

Acevedo-Jake, A.M., Jalan, A., and and Hartgerink, J.D. 2015. Comparative NMR analysis of collagen triple helix organization from N- to C-termini. Biomacromol. 16(1): 145–155. https://doi.org/10.1021/bm1501281a
Association of Official Analytical Chemists (AOAC). 2000. “Official Methods of Analysis, ”17th edn. AOACssociation of Analytical Chemists. Washington, DC.
Balikci, E., Baran, E.T., Tahmascebifar, A., and Yilmaz, B. 2024. Characterization of collagen jellyfish Aurelia aurita and investigation of biomaterials potentials. Appl. Biochem. Biotechnol. 196(9):6200–6221. https://doi.org/10.1007/s12010-023-04848-5
Barzideh, Z., Latiff, A.A., and Gan, C.Y. 2014. Isolation and characterisation of collagen from the ribbon jellyfish (Chrysaora sp.). Int. J. Food Sci. Technol. 49(6): 1490–1499. http://dx.doi.org/10.1111/ijfs.12464
Baum, J., and Brodsky, B. 1997. Real-time NMR investigations of triple-helix folding and collagen folding diseases. Fold. Des. 2(4): R53–R60. https://doi.org/10.1016/S1359-0278(97)00028-X
Benzie, I.F.,and and Strain, J.J. 1996. Ferric reducing/antioxidant power assay: Ddirect measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299:15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
Bleve, G., Ramires, F.A., Gallo, A.,and and Leone, A. 2019. Identification of safety and quality parameters for preparation of jellyfish novel food products. Foods. 8(7): 263. https://doi.org/10.3390/foods8070263
Bowen, A.J., Ekbom, D.C., Hunter, D., Voss, S., Bartemes, K., Mearns-Spragg, A., Oldenburg, M.S.,and and San-Marina, S. 2022. Larynx proteomics after jellyfish collagen IL: Iincreased ECM/collagen and suppressed inflammation. Laryngoscope Investig Otolaryngol. 27(5):1513–1520. https://doi.org/ 10.1002/lio2.924
Brotz, L., Cisneros-Montemayor, A. M., and and Cisneros-Mata, M.Á. 2021. The race for jellyfish: Wwinners and losers in Mexico’s Gulf of California. Mar. Policy. 134: 104775. https://doi.org/10.1016/j.marpol.2021.104775
Byun, H-G., Lee, J.K., Park, H.G., Jeon, J-K., and and Kim, S-K. 2009. Antioxidant peptides isolated from the marine rotifer. Brachionus rotundiformis. Process Biochem. 44: 842–846. https://doi.org/10.1016/j.procbio.2009.04.003
Cadar, E., Pesterau, A. M., Sirbu, R., Negreanu-Pirjol, B. S., and and Tomescu, C. L. 2023. Jellyfish–—significant marine resources with potential in the wound-healing process: Aa review. Mar. Drugs. 21(4): 201. https://doi.org/10.3390/md21040201
Chen, J.D., Li, L., Yi, R.Z., Xu, N.H., Gao, R., and and Hong, B.H. 2016. Extraction and characterization of acid-soluble collagen from scales and skin tilapia (Oreochromis niloticus). LWT-Food Sci. Technol (LWT). 66: 453–459. https://doi.org/10.1016/j.lwt.2015.10.070
Chiarelli, P.G., Suh, J.H., Pegg, R.B., Chen, J., and and Solval, K.M. 2023. The emergence of jellyfish collagen: Aa comprehensive review on research progress, industrial applications, and future opportunities. Trends Food Sci. Tech. 141: 104206. https://doi.org/10.1016/j.tifs.2023.104206
Clauser, K.R., Baker, P., and and Burlingame, A.L. 1999. Role of accurate mass measurement (+/-10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal. Chem. 71: 2871–2882. https://doi.org/10.1021/ac9810516
Cruz, D. 2024. La pesquería de la medusa bola de cañón en México [(The cannonball jellyfish fishery in Mexico)]. Available athttps://sirbaa.com/category/recursos-pesqueros/. (Accessed on: 10 May 10, 2024).
D’Ambra, I.,and and Merquiol, L. 2022. Jellyfish from fisheries by-catches as a sustainable source of high-value compounds with biotechnological applications. Mar. Drugs. 20(4): 266. https://doi.org/10.3390/md20040266
De Domenico, S., De Rinaldis, G., Paulmery, M., Piraino, S., and and Leone, A. 2019. Barrel jellyfish (Rhizostoma pulmo) as source of antioxidant peptides. Mar. Drugs. 17(2):34. https://doi.org/10.3390/md17020134
De Palma, C.,and and Clementi, E. 2014. Reactive species and mechanisms of cell injury. In: McManus, L.M. and Mitchell, R.N. (Eds.) “Pathobiology of Human Disease”.L.M. McManus andR.N. Mitchell (Ed.),p. 88. Academic Press, Cambridge, MA, p. 88..
Derkach, S. R., Voron’ko, N. G., Sokolan, N. I., Kolotova, D. S., and and Kuchina, Y. A. 2019. Interactions between gelatin and sodium alginate: UV and FTIR studies. J. Disper. Sci. Technol., 41(5): 690–698. https://doi.org/10.1080/01932691.2019.1611437
Doyle, B.B., Bendit, E.G., and and Blout E.R. 1975. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers. 14(5):937–957. https://doi.org/10.1002/bip.1975.360140505
Doyle, T.K., Houghton, J.D., McDevitt, R., Davenport, J., and and Hays, D.C. 2007. The energy density of jellyfish: Eestimates from bomb-calorimetry and proximate composition. J. Exp. Mar. Biol. Ecol. 343: 239–252. https://doi.org/10.1016/j.jembe.2006.12.010.
Duan, R., Zhang, J., Du, X.., Yao, X., and and Konno, K. 2009. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 112(3): 702–706. https://doi.org/10.1016/j.foodchem.2008.06.020
Esparza-Espinoza, D.M., Santacruz-Ortega, H.C., Plascencia-Jatomea, M., Aubourg, S.P., Salazar-Leyva, J.A., Rodríguez-Felix, F., and and Ezquerra-Brauer, J. M. 2023. Chemical-structure identification of crude gelatin from jellyfish (Stomolophus meleagris) and evaluation of its potential biological activity. Fishes. 8(5):246. https://doi.org/10.3390/fishes8050246
FAO. 2024. FishStat: Global capture production 1950–2022. Available athttps://www.fao.org/fishery/en/statistics/software/fishstatj. Accessed March 29, 2024.
Faruqui, N., Williams, D.S., Briones, A., Kepiro, I.E., Ravi, J., Kwan, T.O.C., Mearns-Spragg, A., and and Ryadnov, M.G. 2023. Extracellular matrix type 0: Ffrom ancient collagen lineage to a versatile product pepline-JellaGelTM. Mater. Today Bio. 22:100786. https://doi.org/10.1016/j.mtbio.2023.100786
Felician, F.F., Yu, R.H., Li, M-Z., Li, C.-J., Chen, H.-Q., Jiang, Y., Tang, T., Qi, W.-Y., and and Xu, H.-M. 2019. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin. J. Traumatol. 22(1):12–20. https://doi.org/10.1016/j.cjtee.2018.10.004
Food and Agriculture Organization of the United Nations (FAO). 2024. FishStat: Global Capture Production 1950–2022. https://www.fao.org/fishery/en/statistics/software/fishstatj (Accessed on: 29 March 2024).
Fullerton, G.D., Nes, E., Amurao, M., Rahal, A., Krasnosselskaia, L., and and Cameron, I. (2006). An NMR method to characterize multiple water compartments on mammalian collagen. Cell Biol. Int., 30(1):,66–73. https://doi.org/10.1016/j.cellbi.2005.09.009
Gómez-Salinas, L.C., López-Martínez, J., and and Morandini, A.C. 2021. The young stages of the cannonball jellyfish (Stomolophus sp. 2) from the central Gulf of California (Mexico). Divers. 13(6): 229. https://doi.org/10.3390/d13060229
Guttuso, P., Nogueira, N., Gueron, S.K.M., Javidpour, J., Canning-Clode, J., and and Andrade, C.A.P. 2025. Is jellyfish a suitable ingredient for aqua feed? A comprehensive review of nutritional potential and limitation. Front. Mar. Sci. 12:1539725. https://doi.org/10.3389/fmars.2025.1539725
Haard, N. F., Feltham, L. A., Helgi, N., and and Squires, J. 1982. Modification of protein with enzymes and marine environment. Ch. 8. In: R. Fenney, R. and J. Whitaker, J. (Eds.) Modification of Protein in Food, Pharmaceutical and Nutritional Sciences. R. Fenney andJ. Whitaker (Ed.), Ch. 8. p. 223. ACS Publications, Washington, DC, Chap. 8, p. 223.
James, S., Tilvi, S., Khandeparker, R., Sreepada, R.A., Thakur, N., and and Gauthankar, M. 2023. Jellyfish Rhizostoma pulmo collected off Goa Ccoast (India) as rich source of tryptophan containing collagen and its enhanced antioxidant potential. J. Food Sci. Technol. 60(11):2825–2834. https://doi.org/10.1007/s13197-023-05800-5
Jiang, Y., Zhang, M., Lin, S., and and Cheng, S. 2018. Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins. Food Res. Int. 105: 836–844. https://doi.org/10.1016/j.foodres.2017.12.022
Karim, A.A.,and and Bhat, R. 2009. Fish gelatin: Pproperties, challenges, and and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 23(3): 563–576. https://doi.org/10.1016/j.foodhyd.2008.07.002
Khong, N.M.H., Yusoff, F.M., Jamilah, B., Basri, M., Maznah, I., Chan, K.W., and and Nishikawa, J. 2016. Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chem. 196: 953–960. https://doi.org/10.1016/j.foodchem.2015.09.094
Kimura, S., Miura, S.,and and Park, Y-H. 1983. Collagen as the major edible component of jellyfish (Stomolophus nomurai). J. Food Sci. 48(6): 1758–1760. https://doi.org/10.1111/j.1365-2621.1983.tb05078.x
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685. https://doi.org/10.1038/227680a0
Lu, J., Jin, Y., and and Liu, G. 2010. Flavonoids from the leaves of Actinidia kolomikta. Chem. Nat. Compd. 46: 205–208. https://doi.org/10.1007/s10600-010-9569-6
Lueyot, A., Rungsardthong, V., Vatanyoopaisarn, S., Hutangura, P., Wonganu, B., Wongsa-Ngasri, P., Charoenlappanit, S., Roytrakul, S., and and Thuthanaruk, B. 2021. Influence of collagen and some proteins on gel properties of jellyfish gelatin. PLoS ONE. 16:e0253254. https://doi.org/10.1371/journal.pone.0253254
McMurry, J., Hidalgo Mondragón, C., and and González Pozo, V. 2012. “Química Orgánica,” 8th edn. Cengage Learning. Boston, MA.
Mooney, C., Haslam, N., Pollastri, G., and and Shields, D.C. 2012. Towards the improved discovery and design of functional peptides: Ccommon features of diverse classes permit generalized prediction of bioactivity. PLoS ONE. 7(10):e45012. https://doi.org/10.1371/journal.pone.0045012
Nagai, T., Worawattanamateekul, W., Suzuki, N., Nakamura, T., Ito, T., Fujiki, K., Nakao, M., and and Yano, T. 19992000. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem. 70(2): 205–208. https://doi.org/10.1016/S0308-8146(00)00081-9
Neves, A. C., Harnedy-Rothwell, P. A., and and FitzGerald, R. J. 2022. In vitro angiotensin-converting enzyme and dipeptidyl peptidase-IV inhibitory, and antioxidant activity of blue mussel (Mytilus edulis) byssus collagen hydrolysates. Eur. Food Res. Technol. 248: 1721–1732. https://doi.org/10.1007/s00217-022-04000-3
Ovando-Roblero, A., Meza-Gordillo, R., Castañeda-Valbuena, D., Castañón-González, J.H., Ruiz-Valdiviezo, V.M., Gutiérrez-Santiago, R., and and Grajales-Lagunes, A. 2023. Metal-chelated biomaterial from collagen extracted from pleco skin (Pterygoplichthys pardalis). SN Appl. Sci. 5: 321. https://doi.org/10.1007/s42452-023-05549-8
Payne, K.,and and Veis, A. 1988. Fourier transform IR spectroscopy of collagen and gelatin solutions: Ddeconvolution of the amide I band for conformational studies. Biopolymers. 27:1749–1760. https://doi.org/10.1002/bip.360271105
Prior, R.L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., and and Jacob, R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity [(ORACFL)]) of plasma and other biological and food samples. J. Agric. Food Chem. 5: 3273–327. https://doi.org/10.1021/jf0262256
Raposo, A., Alasqah, I., Alfheeaid, H.A., Alsharari, Z.D., Alturki, H.A., and and Raheem, D. (2022). Jellyfish as food: Aa narrative review. Foods. 11: 2773. https://doi.org/10.3390/foods11182773
Rastian, Z., Pütz, S., Wang, Y.J., Kumar, S., Fleissner, F., Weidner, T., and and Parekh, S.H. 2018. Type I collagen from jellyfish Catostylus mosaicus for biomaterial applications. ACS Biomater. Sci. Eng. 4(6): 2115–2125. https://doi.org/10.1021/acsbiomaterials.7b00979
Re, R., Pellegrini, N., Protoggente, A., Pannala, A., Yang, M.,and and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Safi, S.Z., Rahim, A., Rizvi, S.A. A.,and and Rehman, I.U. 2018. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 53(9):703–746. https://doi.org/10.1080/05704928.2018.1426595
Rodríguez, F., Morán, L., González, G., Troncoso, E., and and Zúñiga, R.N. 2017. Collagen extraction from mussel byssus: Aa new marine collagen source with physicochemical properties of industrial interest. J. Food Sci. Technol. 54(5): 1228–1238. https://doi.org/10.1007/s13197-017-2566-z
Safandowska, M.,and and Pietrucha, K. 2013. Effect of fish collagen modification on its thermal and rheological properties. Int. J. Biol. Macromol. 53:32–37. https://doi.org/10.1016/j.ijbiomac.2012.10.026
Sell, D. R.,and and Monnier, V. M. 1989. Structure elucidation of a senescence cross-link from human extracellular matrix: Iimplication of pentoses in the aging process. J Biol. Chem. 3264: 21597–21602. https://doi.org/10.1016/S0021-9258(20)88225-8
Sudirman, S., Chen, C.Y., Chen, C.K., Felim, J., Kuo, H.P., and and Kong, Z.L. 2023. Fermented jellyfish (Rhopilema esculentum) collagen enhances antioxidant activity and cartilage protection on surgically induced osteoarthritis in obese rat. Front. Pharmacol. 14:1117893. https://doi.org/10.3389/fphar.2023.1117893
Tanaka, H., Ishimura, S., Nagatsuka, Y., and and Ohashi, K. 2018. Smooth muscle-like Ca2+-regulation of actin-myosin interaction in adult jellyfish striated muscle. Sci. Rep. 8:7776. https://doi.org/10.1038/s41598-018-24817-x
Upata, M., Siriwoharn, T., Makkhun, S., Yarnpakdee, S., Regenstein, J.M., and and Wangtueai, S. 2022. Tyrosinase inhibitory and antioxidant activity of enzymatic protein hydrolysate from jellyfish (Lobonema smithii). Foods. 11(4):615. https://doi.org/10.3390/foods11040615
Vázquez-Ortiz, F.A., Caire-Juvera, G., Higuera-Ciapara, I., and and Hernández, G. 1995. High performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chromatogr. 18(10): 2059–2068. https://doi:10.1080/10826079508013960
Vázquez-Ortiz, F., Morón-Fuenmayor, O., and and González-Méndez, N. 2004. Hydroxyproline measurement by HPLC: Iimproved method of total collagen determination in meat samples. J. Liq. Chromatogr. Relat. Technol. 27(17):2771–2780. https://doi.org/10.1081/JLC-200029339
Wang, L., An, X., Xin, Z., Zhao, L.,and and Hu, Q. 2007. Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). J. Food Sci. 72(8): E450–E455. https://doi:10.1111/j.1750-3841.2007.00478.x
Zeng, Q., Fan, X., Zheng, Q., Wang, J., and and Zhang, X. 2018). Anti-oxidant, hemolysis inhibition, and collagen-stimulating activities of a new hexapeptide derived from Arthrospira (Spirulina) platensis. J. Appl. Phycol. 30:1655–1665. https://doi.org/10.1007/s10811-017-1378-x
Zhang, J., Duan, R., Huang, L., Song, Y., and and Regenstein, J.M. 2014. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye). Food Chem. 150: 22–26. https://doi.org/10.1016/j.foodchem.2013.10.116
Zheng, L., Dong, H., Su, G., Zhao, Q., and and Zhao, M. 2016). Radical scavenging activities of Tyr-, Trp, Cys- and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chem. 197:807–813. https://doi.org/10.1016/j.foodchem.2015.11.012
Zou, T-B., He, T-P., Li, H-B., Tang, H-W., and and Xia, E-Q. 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules. 21(1):72. https://doi.org/10.3390/molecules21010072