EVALUATION OF THE SAFETY OF MILANO-TYPE DRY FERMENTED SAUSAGES PRODUCED BY A FAST DRYING TECHNOLOGY

Main Article Content

M.N. Haouet
M.S. Altissimi
M.L. Mercuri
C. Baldassarri
A. Osimani
F. Clementi
R. Ortenzi

Keywords

accelerated drying, challenge test, dry fermented sausages, food safety, Milano-type fermented sausages

Abstract

A challenge test based on the inoculum of a multi-strain cocktail of Listeria innocua and Salmonella enterica viable cells was carried out to evaluate the capacity of an accelerated manufacturing technique (including conventional fermentation of the meat batter followed by freezing, slicing and drying) to guarantee the safety of Milano-type fermented sausages. The counts of S. enterica decreased by 1.5 and 1.6 log CFU/g in the sausages inoculated with 2 and 4 log CFU/g, respectively, while a less notable reduction (0.4 log CFU/g) was recorded for L. innocua, independently from the inoculum load. The comparison between the main microbiological and physico-chemical features of non-inoculated fermented sausages produced through either the accelerated or the traditional process highlighted significant differences in the percent R.U. and aw values. In both cases, the absence of Salmonella spp. and Listeria monocytogenes was ascertained. These outcomes encourage further investigation on the fate of these foodborne pathogens during a shelf-life challenge test.

Abstract 389 | PDF Downloads 363

References

Aquilanti L., Garofalo C., Osimani A. and Clementi F. 2016. Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: an overview. Int. Food Res. J. 23: 429.

Aquilanti L., Santarelli S., Silvestri G., Osimani A., Petruzzelli A. and Clementi F. 2007. The microbial ecology of a typical Italian salami during its natural fermentation. Int. J. Food Microbiol. 120:136.

Arnau J., Serra X., Comaposada J., Gou P. and Garriga M. 2007. Technologies to shorten the drying period of dry-cured meat products. Meat Sci. 77: 81.

Brown M.H., Gill C.O., Hollingsworth J., Nickelson R., Seward S., Sheridan J.J., Stevenson T., Sumner J.L., Theno D.M., Usborne W.R. and Zink D. 2000. The role of microbiological testing in systems for assuring the safety of beef. Int. J. Food Microbiol. 62: 7.

Cole M.B., Jones M.V. and Holyoak C. 1990. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monoytogenes. J. Appl. Bact. 69: 63.

Comaposada J., Arnau J., Gou P. and Monfort J.M. 2004. Accelerated method for drying and maturing sliced food products. Patent number WO2004IB00661.

Comaposada J., Arnau J., Garriga M., Xargayó M., Freixanet J., Bernardo J., Corominas M. 2008. Development of new formats and products - fast drying of dry-cured meat products applying the quick-dry-slice (QDS) process. Fleischwirtschaft Int. 23: 51.

Dalzini E., Cosciani-Cunico E., Bernini V., Bertasi B., Losio M-N., Daminelli P. and Varisco G. 2015. Behaviour of Escherichia coli O157 (VTEC), Salmonella Typhimurium and Listeria monocytogenes during the manufacture, ripening and shelf life of low fat salami. Food Control 47: 306.

Feiner G. 2006. Raw Fermented Salami. Meat products handbook: practical science and technology, Cambridge LK: Woodhead Publishing Limited. 314-375.

Leyer G.J. and Johnson E.A. 1992. Acid adaptation promotes survival of Salmonella spp. in cheese. Appl. Environ. Microbiol. 58: 2075.

Mataragas M., Rovetto F., Bellio A., Alessandria V., Rantsiou K., Decastelli L. and Cocolin L. 2015. Differential gene expression profiling of Listeria monocytogenes in Cacciatore and Felino salami to reveal potential stress resistance biomarkers. Food Microbiol. 46: 408.

Osimani A., Zannini E., Aquilanti L., Mannazzu I., Comitini F. and Clementi F. 2009. Lactic acid bacteria and yeasts from wheat sourdoughs of the Marche Region. Ital. J. Food Sci. 21: 269.

Paulsen P., Vali S. and Bauer F. 2011. Quality traits of wild boar mould-ripened salami manufactured with different selections of meat and fat tissue, and with and without bacterial starter cultures. Meat Sci. 89: 486.

Petruzzelli A., Blasi G., Masini L., Calza L., Duranti A., Santarelli S., Fisichella S., Pezzotti G., Aquilanti L., Osimani A. and Tonucci F. 2010. Occurrence of Listeria monocytogenes in salami manufactured in the Marche region (Central Italy). J. Vet. Med. Sci. 72: 499.

Petruzzelli A., Osimani A., Pasquini M., Clementi F., Vetrano V., Paolini F., Foglini M., Micci E., Paoloni A. and Tonucci F. 2016. Trends in the microbial contamination of bovine, ovine and swine carcasses in three small-scale abattoirs in Central Italy: a four-year monitoring. Meat Sci. 111: 53.

Rebecchi A., Crivori S., Sarra P.G. and Cocconcelli P.S. 1998. Physiological and molecular techniques for the study of bacterial community development in sausage fermentation. J. Appl. Microbiol. 84: 1043.

Shabala L., Budde B., Ross T., Siegumfeldt H. and Mcmeekin T. 2001. Responses of Listeria monocytogenes to acid stress and glucose availability monitored by measurements of intracellular pH and viable counts. Int. J. Food Microbiol. 75: 89.

Stollewerk K., Jofré A., Comaposada J., Ferrini G. and Garriga M. 2011. Ensuring food safety by an innovative fermented sausage manufacturing system. Food Control 22: 1984.

Zanardi E., Dorigoni V., Badiani A. and Chizzolini R. 2002. Lipid and colour stability of Milano-type. Meat Sci. 61: 7.