Rosa moschata leaf extract ameliorates Alzheimer’s disease in AlCl3 + D-galactose induced Alzheimer’s rat model via modulation of neuroinflammatory biomarkers and suppression of oxidative stress markers

Main Article Content

Norah K. Algarzae
Uzma Saleem
Ifat Alsharif
Rabeea Safdar
Zunera Chauhdary
Moneerah J. Alqahtani
Jawaher Alqahtani
Fatima A. Jaber
Tourki A. S. Baokbah
Reem Hasaballah Alhasani
Tasahil S. Albishi
Sultan F. Kadasah
Sultan M. Alshahrani
Nada M. Mostafa
Omayma A. Eldashan
Agustina Lulustyaningati Nurul Aminin
Muhammad Ajmal Shah
Rana O. Khayat
Aishah E. Albalawi
Ana Sanches Silva https://orcid.org/0000-0002-0226-921X

Keywords

animal behavior, anti-alzheimer’s, neurodegeneration, neuroinflammation, phytomedicine, Rosa moschata

Abstract

Conventional treatment strategies provide symptomatic relief from Alzheimer’s disease (AD), but their long-term use is associated with the progression of neuronal degeneration. Considering the previously reported in vitro neuroprotective activity of Rosa moschata, this study was designed to evaluate the anti-Alzheimer’s potential of R. moschata leaf extract (RMLE) at safe doses in an aluminum chloride + D-galactose-induced AD rat model. An HPLC/ESI-MS analysis of the RMLE was performed to identify the neuroprotective phytochemicals. An oral acute toxicity study was conducted to determine the safe dosage levels. For the development of the AD model, aluminum chloride + D-galactose (150 mg/kg each) were administered simultaneously to rats, except the control group. RMLE at 50, 100, and 150 mg/kg was administered orally to the treatment groups for three weeks. Neurobehavioral studies were performed, and the levels of antioxidant enzymes and neurotransmitters in the brain homogenate were assessed. Using qPCR, the mRNA expression of neuropathological biomarkers of AD was estimated. HPLC/ESI-MS analysis revealed the presence of 12 compounds in negative mode and 2 compounds in positive ionic mode, exhibiting antioxidant and neuroprotective potential. RMLE improved rat behavioral parameters in a dose-dependent manner through the inhibition of oxidative stress and acetylcholinesterase. Neurotransmitter levels and gene expression of neurodegenerative and neuroinflammatory biomarkers (IL-1β, IL-1α, TNF-α, ABPP, β-secretase, and α-synuclein) were significantly restored (P < 0.05) in a dose-dependent manner by RMLE. These findings support the therapeutic application of extracts obtained from R. moschata leaves in neurodegeneration, particularly in AD.

Abstract 51 | PDF Downloads 14 HTML Downloads 0 XML Downloads 1

References

Abdelghffar, E. A., El-Nashar, H. A. S., Al-Mohammadi, A. G. A., & Eldahshan, O. A. (2021). Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food & Function, 12(19), 9443–9455. 10.1039/d1fo01905h

Al-Amin, M. M., Reza, H. M., Saadi, H. M., Mahmud, W., Ibrahim, A. A., Alam, M. M., & Quddus, A. R. (2016). Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice. European Journal of Pharmacology, 777, 60–69. 10.1016/j.ejphar.2016.02.062

Altamirano-Espino, J. A., Sánchez-Labastida, L. A., Martínez-Archundia, M., Andrade-Jorge, E., & Trujillo-Ferrara, J. G. (2020). Acetylcholinesterase Inhibition (Potential Anti-Alzheimer Effects) by Aminobenzoic Acid Derivatives: Synthesis, in Vitro and in Silico Evaluation. Chemistry Select, 5(44), 14177–14182. 10.1002/slct.202003471

Basli, A., Soulet, S., Chaher, N., Mérillon, J.-M., Chibane, M., Monti, J.-P., & Richard, T. (2012). Wine polyphenols: potential agents in neuroprotection. Oxidative Medicine and Cellular Longevity, 2012. 10.1155/2012/805762

Bibak, B., Teymouri, M., Mohammadi, A., Haghbin, A., Pan, Y., Kasaian, J., & Alesheikh, P. (2019). Tongluojiunao, a traditional Chinese medication with neuroprotective ability: A review of the cellular, molecular and physiological mediators of TLJN’s effectiveness. Biomedicine & Pharmacotherapy, 111, 485–495. 10.1016/j.biopha.2018.12.082

Chauhdary, Z., Saleem, U., Ahmad, B., Shah, S., & Shah, M. A. (2019). Neuroprotective evaluation of Tribulus terrestris L. in aluminum chloride induced Alzheimer’s disease. Pakistan Journal of Pharmaceutical Sciences, 32.

Chitra, V., Manasa, K., & Evelyn Sharon, S. (2019). Impact of hydroalcoholic concentrate of Hemidesmus indicus against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine prompted parkinsonism in mice. Asian Journal of Pharmaceutical and Clinical Research, 337–342. 10.22159/ajpcr.2019.v12i3.30610

Cummings, J., Lee, G., Ritter, A., Sabbagh, M., & Zhong, K. (2020). Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s & Dementia, 6(1), e12050. 10.1002/trc2.12050

Daglia, M., Di Lorenzo, A., F Nabavi, S., S Talas, Z., & M Nabavi, S. (2014). Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Current Pharmaceutical Biotechnology, 15(4), 362–372. 10.2174/138920101504140825120737

Dugger, B. N., & Dickson, D. W. (2017). Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 9(7), a028035. 10.1101/cshperspect.a028035

Haider, S., Liaquat, L., Ahmad, S., Batool, Z., Siddiqui, R. A., Tabassum, S., & Naz, N. (2020). Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PloS One, 15(1), e0227631. 10.1371/journal.pone.0227631

Hamedi, A., Zengin, G., Aktumsek, A., Selamoglu, Z., & Pasdaran, A. (2020). In vitro and in silico approach to determine neuroprotective properties of iridoid glycosides from aerial parts of Scrophularia amplexicaulis by investigating their cholinesterase inhibition and anti-oxidant activities. Biointerface Research in Applied Chemistry, 10(3), 5429–5454. 10.33263/BRIAC103.429454

Han, H., Liu, Z., Yin, J., Gao, J., He, L., Wang, C., & Li, T. (2021). D-Galactose induces chronic oxidative stress and alters gut microbiota in weaned piglets. Frontiers in Physiology, 12, 634283. 10.3389/fphys.2021.634283

Hossain, M. F., Wang, N., Chen, R., Li, S., Roy, J., Uddin, M. G., & Song, Y.-Q. (2021). Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology. Ageing Research Reviews, 67, 101304. 10.1016/j.arr.2021.101304

Janelidze, S., Berron, D., Smith, R., Strandberg, O., Proctor, N. K., Dage, J. L., & Hansson, O. (2021). Associations of plasma phospho-Tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurology, 78(2), 149–156. 10.1001/jamaneurol.2020.4201

Kamel, A.S., Abdelkader, N. F., El-Rahman S.S.A., Emara M., Zaki H.F., & Khattab M.M. (2018). Stimulation of ACE2/ANG(1-7)/Mas Axis by Diminazene Ameliorates Alzheimer’s Disease in the D-Galactose-Ovariectomized Rat Model: Role of PI3K/Akt Pathway. Molecular Neurobiology, 55, 8188–8202. 10.1007/s12035-018-0966-3

Kandimalla, R., & Reddy, P. H. (2017). Therapeutics of neurotransmitters in Alzheimer’s disease. Journal of Alzheimer’s Disease, 57(4), 1049–1069. 10.3233/JAD-161118

Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2019). Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 10(1), 59. 10.3390/biom10010059

Koushki, D., Latifi, S., Norouzi Javidan, A., & Matin, M. (2015). Efficacy of some non-conventional herbal medications (sulforaphane, tanshinone IIA, and tetramethylpyrazine) in inducing neuroprotection in comparison with interleukin-10 after spinal cord injury: a meta-analysis. The Journal of Spinal Cord Medicine, 38(1), 13–22. 10.1179/2045772314Y.0000000215

Kovacsova, M., Barta, A., Parohova, J., Vrankova, S., & Pechanova, O. (2010). Neuroprotective mechanisms of natural polyphenolic compounds. Activitas Nervosa Superior Rediviva, 52(3), 181–186.

Kumar, A., & Singh, A. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports, 67(2), 195–203. 10.1016/j.pharep.2014.09.004

Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology, 17(3), 157–172. 10.1038/s41582-020-00435-y

Li, S., & Pu, X.-P. (2011). Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biological and Pharmaceutical Bulletin, 34(8), 1291–1296. 10.1248/bpb.34.1291

Mathew, M., & Subramanian, S. (2014). In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian Journal of Experimental Biology, 52(6):606–612

Mazur, M., & Masłowiec, D. (2022). Antimicrobial Activity of Lactones. Antibiotics, 11(10), 1327.

McGirr, S., Venegas, C., & Swaminathan, A. (2020). Alzheimers disease: A brief review. Journal of Experimental Neurology, 1(3), 89–98.

Mekky, R. H., Abdel-Sattar, E., Segura-Carretero, A., & Contreras, M. d. M. (2019). Phenolic compounds from sesame cake and antioxidant activity: a new insight for agri-food residues’ significance for sustainable development. Foods, 8(10), 432. 10.3390/foods8100432

Mielech, A., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2020). Vitamins in Alzheimer’s disease—Review of the latest reports. Nutrients, 12(11), 3458. 10.3390/nu12113458

Naz, I., Masoud, M. S., Chauhdary, Z., Shah, M. A., & Panichayupakaranant, P. (2022). Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers. Journal of Food Biochemistry, e14389. 10.1111/jfbc.14389

Nazir, N., Khalil, A. A. K., Nisar, M., Zahoor, M., & Ahmad, S. (2020a). HPLC-UV characterization, anticholinesterase, and free radical-scavenging activities of Rosa moschata Herrm. leaves and fruits methanolic extracts. Brazilian Journal of Botany, 43, 523–530.

Nebel, R. A., Aggarwal, N. T., Barnes, L. L., Gallagher, A., Goldstein, J. M., Kantarci, K., & Yu, W. H. (2018). Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. Alzheimer’s & Dementia, 14(9), 1171–1183. 10.1016/j.jalz.2018.04.008

Pacifico, S., Piccolella, S., Nocera, P., Tranquillo, E., Dal Poggetto, F., & Catauro, M. (2019). New insights into phenol and polyphenol composition of Stevia rebaudiana leaves. Journal of Pharmaceutical and Biomedical Analysis, 163, 45–57.

Parambi, D. G. T., Saleem, U., Shah, M. A., Anwar, F., Ahmad, B., Manzar, A., & Kim, H. (2020). Exploring the therapeutic potentials of highly selective oxygenated chalcone based MAO-B inhibitors in a haloperidol-induced murine model of Parkinson’s disease. Neurochemical Research, 45(11), 2786–2799. 10.1007/s11064-020-03130-y

Rebai, O., & Djebli, N. E. (2008). Chronic exposure to aluminum chloride in mice: exploratory behaviors and spatial learning. Advances in Biological Research, 2(1–2), 26–33.

Revel, F., Gilbert, T., Roche, S., Drai, J., Blond, E., Ecochard, R., & Bonnefoy, M. (2015). Influence of oxidative stress biomarkers on cognitive decline. Journal of Alzheimer’s Disease, 45(2), 553–560. 10.3233/JAD-141797

Saleem, U., Akhtar, R., Anwar, F., Shah, M. A., Chaudary, Z., Ayaz, M., & Ahmad, B. (2021). Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metabolic Brain Disease, 36(5), 889–900. 10.1007/s11011-021-00683-x

Saleem, U., Amin, S., Ahmad, B., Azeem, H., Anwar, F., & Mary, S. (2017). Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. roots in albino mice as per OECD 425 TG. Toxicology Reports, 4, 580–585. 10.1016/j.toxrep.2017.10.005

Saleem, U., Chauhdary, Z., Islam, S., Zafar, A., Khayat, R. O., Althobaiti, N. A., & Shah, M. A. (2022). Sarcococca saligna ameliorated D-galactose induced neurodegeneration through repression of neurodegenerative and oxidative stress biomarkers. Metabolic Brain Disease, 1–18. 10.1007/s11011-022-01046-w

Saleem, U., Chauhdary, Z., Raza, Z., Shah, S., Rahman, M.-u., Zaib, P., & Ahmad, B. (2020). Anti-Parkinson’s Activity of Tribulus terrestris via Modulation of AChE, α-Synuclein, TNF-α, and IL-1β. ACS Omega, 5(39), 25216–25227. 10.1021/acsomega.0c03375

Saleem, U., Raza, Z., Anwar, F., Ahmad, B., Hira, S., & Ali, T. (2019). Experimental and Computational Studies to Characterize and Evaluate the Therapeutic Effect of Albizia lebbeck (L.) Seeds in Alzheimer’s Disease. Medicina, 55(5), 184. 10.3390/medicina55050184

Sallam, A., Mira, A., Sabry, M. A., Abdel-Halim, O. B., Gedara, S. R., & Galala, A. A. (2021). New prenylated flavonoid and neuroprotective compounds from Tephrosia purpurea subsp. dunensis. Natural Product Research, 35(24), 5612–5620. 10.1080/14786419.2020.1815739

Selamoglu-Talas, Z., Ozdemir, I., Ciftci, O., & Cakir, O. (2013). Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats. Journal of Pharmaceutical Care, 45–50.

Sengoku, R. (2020). Aging and Alzheimer’s disease pathology. Neuropathology, 40(1), 22–29. 10.1111/neup.12626

Sevindik, M., Akgul, H., Selamoglu, Z., & Braidy, N. (2021). Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology, 12(2), 128–138. 10.1080/21501203.2020.1816584

Shah, M.A., Muhammad, H., Mehmood, Y., Khalil, R., Ul-Haq, Z. and Panichayupakaranant, P., 2017. Superoxide scavenging and antiglycation activity of rhinacanthins-rich extract obtained from the leaves of Rhinacanthus nasutus. Pharmacognosy Magazine, 13(52), 652. 10.4103/pm.pm_196_17

Shah, M.A., Reanmongkol, W., Radenahmad, N., Khalil, R., Ul-Haq, Z. and Panichayupakaranant, P., 2019. Anti-hyperglycemic and anti-hyperlipidemic effects of rhinacanthins-rich extract from Rhinacanthus nasutus leaves in nicotinamide-streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy, 113, 108702. 10.1016/j.biopha.2019.108702

Shah, M.A., Abuzar, S.M., Ilyas, K., Qadees, I., Bilal, M., Yousaf, R., Kassim, R.M.T., Rasul, A., Saleem, U., Alves, M.S. and Khan, H., 2023. Ginsenosides in cancer: Targeting cell cycle arrest and apoptosis. Chemico-biological interactions, 382, 110634. 10.1016/j.cbi.2023.110634

Shohag, S., Akhter, S., Islam, S., Sarker, T., Sifat, M. K., Rahman, M., & Sharma, R. (2022). Perspectives on the molecular mediators of oxidative stress and antioxidant strategies in the context of neuroprotection and neurolongevity: an extensive review. Oxidative Medicine and Cellular Longevity, 2022. 7743705. 10.1155/2022/7743705

Sims-Robinson, C., Kim, B., Rosko, A., & Feldman, E. L. (2010). How does diabetes accelerate Alzheimer disease pathology? Nature Reviews Neurology, 6(10), 551–559. 10.1038/nrneurol.2010.130

Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 24(8), 1583. 10.3390/molecules24081583

Sureda, A., Tejada, S., Khan, U. M., & Selamoglu, Z. (2023). An overview of the biological function of curcumin in the processes of oxidative stress, inflammation, nervous system, and lipid levels. Central Asian Journal of Medical and Pharmaceutical Sciences Innovation, 3(1), 1–11.

Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical Interventions in Aging, 2(3), 347.

Tarbiat, S., Türütoğlu, A. S., & Ekingen, M. (2020). Acetylcholinesterase Inhibitory Potential and Antioxidant Activities of Five Cultivars of Rosa damascena Mill. From Isparta, Turkey. Current Topics in Nutraceutical Research, 18(4), 354–359.

Tönnies, E., & Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 57(4), 1105–1121. 10.3233/JAD-161088

Twohig, D., & Nielsen, H. M. (2019). α-Synuclein in the pathophysiology of Alzheimer’s disease. Molecular Neurodegeneration, 14(1), 1–19. 10.1186/s13024-019-0320-x

Vasile, A., Ciobîcă, A., Kamal, F. Z., Mavroudis, I., Plăvan, G., Selamoglu, Z., & Csabai, J. (2024). Latest developments on the connections between diet and most of the neuropsychiatric disorders. Bulletin of Integrative Psychiatry, (2).

Welz, A. N., Emberger-Klein, A., & Menrad, K. (2018). Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complementary and Alternative Medicine, 18(1), 1–9. 10.1186/s12906-018-2160-6

Xiao, F., Li, X.-G., Zhang, X.-Y., Hou, J.-D., Lin, L.-F., Gao, Q., & Luo, H.-M. (2011). Combined administration of D-galactose and aluminium induces Alzheimerlike lesions in brain. Neuroscience Bulletin, 27(3), 143–155. 10.1007/s12264-011-1028-2

Yi, J. H., Whitcomb, D. J., Park, S. J., Martinez-Perez, C., Barbati, S. A., Mitchell, S. J., & Cho, K. (2020). M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer’s disease pathology. Brain Communications, 2(2), fcaa058. 10.1093/braincomms/fcaa058

Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: an update. Journal of Central Nervous System Disease, 12, 1179573520907397. 10.1177/1179573520907397

Zhao, B. (2009). Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochemical Research, 34, 630–638. 10.1007/s11064-008-9900-9