Determination of yeast profile in cheese using Vitek2 and molecular method
Main Article Content
Keywords
ITS sequencing; PCR; VITEK2 system; Yeast
Abstract
In our study, the VITEK2 system and a molecular method (PCR) were used to determine the yeast profile in cheeses produced traditionally from raw milk. The samples were cultured on Rose Bengal Chloramphenicol (RBC) agar, and suspicious colonies were examined under a microscope and identified using the VITEK2 system and the ITS sequencing method. The species Cutaneotrichosporon curvatum, Debaryomyces fabryi, D. prosopidis, and Tausonia pamirica, identified by PCR, were not recognized by the VITEK2 system. In addition, the species Debaryomyces hansenii, Kluyveromyces marxianus, Pichia kudriavzevii, Torulaspora delbrueckii, and Yarrowia lipolytica, identified by the molecular method, were subsequently identified as Candida famata, Candida kefyr, Candida krusei, Candida colliculosa, and Candida lipolytica using the VITEK2 system. The yeast species Candida zeylanoides, Candida parapsilosis, Geotrichum silvicola, and Trichosporon inkin were identified using both methods in the same manner. Upon reviewing the results, some yeasts could not be identified by the VITEK2 system. It was also found that there may be differences in the results of the two methods for yeast identification, VITEK2 and PCR. These differences may be due to telemorphic and anamorphic multiplication in yeasts, and biochemical tests may not be sufficient to distinguish closely related species. Furthermore, identifying foodborne yeasts with the VITEK2 Compact system is limited by the database.
References
2. Abu-Mejdad, N. M., Al-Badran, A. I., & Al-Saadoon, A. H. (2020). A novel report on killer yeast strains identification methods. Basrah Journal of Agricultural Sciences, 33(1), 39–49. https://doi.org/10.37077/25200860.2020.32.1.04
3. Akbulut, S., Baltacı, M., Çanakçı Adıgüzel, G., & Adıgüzel, A. (2022). Identification and potential biotechnological characterization of lactic acid bacteria isolated from white cheese samples. Journal of Pure and Applied Microbiology, 16(4), 2912–2922. https://doi.org/10.22207/JPAM.16.4.66
4. Alsohaili, S. A., & Bani-Hasan, B. M. (2018). Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Ebvastern Desert of Jordan. Jordan Journal of Biological Sciences, 11(3), 329–337
5. Altun, R., Esim, N., Aykutoglu, G., Baltaci, M. O., Adiguzel, A., & Taskin, M. (2020). Production of linoleic acid-rich lipids in molasses-based medium by oleaginous fungus Galactomyces geotrichum TS61. Journal of Food Processing and Preservation, 44(7), e14518. https://doi.org/10.1111/jfpp.14518
6. Astuti, R. I., Prastya, M. E., Wulan, R., Anam, K., & Meryandini, A. (2023). Current trends and future perspective of probiotic yeasts research in Indonesia. FEMS Yeast Research, 23, foad013. https://doi.org/10.1093/femsyr/foad013
7. Atanassova, M. R., Fernández-Otero, C., Rodríguez-Alonso, P., Fernández-No, I. C., Garabal, J. I., & Centeno, J. A. (2016). Characterization of yeasts isolated from artisanal short-ripened cows' cheeses produced in Galicia (NW Spain). Food Microbiology, 53, 172–181. https://doi.org/10.1016/j.fm.2015.09.012
8. Awasti, N., & Anand, S. (2020). The role of yeast and molds in dairy industry: An update. In Dairy processing: Advanced research to applications (pp. 243–262). https://doi.org/10.1007/978-981-15-2608-4_12
9. Bakirci, F., & Kose, E. (2017). Ekşi hamurlardan laktik asit bakterileri ve mayaların izolasyonu ve tanımlanması. Akademik Gıda, 15(2), 149–154. https://doi.org/10.24323/akademik-gida.333670
10. Baltaci, M. O., Genc, B., Arslan, S., Adiguzel, G., & Adiguzel, A. (2017). Isolation and characterization of thermophilic bacteria from geothermal areas in Turkey and preliminary research on biotechnologically important enzyme production. Geomicrobiology Journal, 34(1), 53–62. https://doi.org/10.1080/01490451.2015.1137662
11. Banjara, N., Suhr, M. J., & Hallen-Adams, H. E. (2015). Diversity of yeast and mold species from a variety of cheese types. Current Microbiology, 70(6), 792–800. https://doi.org/10.1007/s00284-015-0790-1
12. Bintsis, T. (2021). Yeasts in different types of cheese. AIMS Microbiology, 7(4), 447. https://doi.org/10.3934/microbiol.2021027
13. Chen, L. S., Ma, Y., Maubois, J. L., Chen, L. J., Liu, Q. H., & Guo, J. P. (2010). Identification of yeasts from raw milk and selection for some specific antioxidant properties. International Journal of Dairy Technology, 63(1), 47–54. https://doi.org/10.1111/j.1471-0307.2009.00548.x
15. Chen, L. S., Ma, Y., Maubois, J. L., Chen, L. J., Liu, Q. H., & Guo, J. P. (2010). Identification of yeasts from raw milk and selection for some specific antioxidant properties. International Journal of Dairy Technology, 63(1), 47–54. https://doi.org/10.1111/j.1471-0307.2009.00548.x
16. Collins, Y. F., McSweeney, P. L., & Wilkinson, M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. International Dairy Journal, 13(11), 841–866. https://doi.org/10.1016/S0958-6946(03)00109-2
17. Coloretti, F., Chiavari, C., Luise, D., Tofalo, R., Fasoli, G., Suzzi, G., & Grazia, L. (2017). Detection and identification of yeasts in natural whey starter for Parmigiano Reggiano cheese-making. International Dairy Journal, 66, 13–17. https://doi.org/10.1016/j.idairyj.2016.10.013
18. Deak, T. (2007). Handbook of food spoilage yeasts. CRC Press. https://doi.org/10.1201/9781420044942
19. Ferreira, A. D., & Viljoen, B. C. (2003). Yeasts as adjunct starters in matured Cheddar cheese. International Journal of Food Microbiology, 86(1–2), 131–140. https://doi.org/10.1016/S0168-1605(03)00252-6
20. Fröhlich-Wyder, M. T., Arias-Roth, E., & Jakob, E. (2019). Cheese yeasts. Yeast, 129–141. https://doi.org/10.1002/yea.3368
21. Garnier, L., Valence, F., Pawtowski, A., Auhustsinava-Galerne, L., Frotté, N., Baroncelli, R., Deniel, F., Coton, E., & Mounier, J. (2017). Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology, 241, 191–197. https://doi.org/10.1016/j.ijfoodmicro.2016.10.026
22. Geronikou, A., Larsen, N., Lillevang, S. K., & Jespersen, L. (2023). Diversity and succession of contaminating yeasts in white-brined cheese during cold storage. Food Microbiology, 113, 104266. https://doi.org/10.1016/j.fm.2023.104266
23. Geronikou, A., Srimahaeak, T., Rantsiou, K., Triantafillidis, G., Larsen, N., & Jespersen, L. (2020). Occurrence of yeasts in white-brined cheeses: Methodologies for identification, spoilage potential and good manufacturing practices. Frontiers in Microbiology, 11, 582778. https://doi.org/10.3389/fmicb.2020.582778
24. Gottardi, D., Siroli, L., Braschi, G., Rossi, S., Bains, N., Vannini, L., Patrignani, F., & Lanciotti, R. (2023). Selection of Yarrowia lipolytica strains as possible solution to valorize untreated cheese whey. Fermentation, 9(1), 51. https://doi.org/10.3390/fermentation9010051
25. Guneser, O., Yuceer, Y. K., Hosoglu, M. I., Togay, S. O., & Elibol, M. (2022). Production of flavor compounds from rice bran by yeast metabolisms of Kluyveromyces marxianus and Debaryomyces hansenii. Brazilian Journal of Microbiology, 53(3), 1533–1547. https://doi.org/10.1007/s42770-022-00766-6
26. Hashhash, A. (2023). Risk assessment of Bacillus cereus in cooked meat products by using VITEK® 2 and PCR. Benha Veterinary Medical Journal, 44(1), 9–12. https://doi.org/10.21608/bvmj.2023.198628.1647
27. Hassan, H. A. J., Sadeq, J. N., Hussain, M. H., & Mohamed, B. J. (2018). Isolation and identification of some bacteria from imported meat (beef burger) by using VITEK2 technique. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 17(2). https://doi.org/10.29079/vol17iss2art514
28. He, Y., Degraeve, P., & Oulahal, N. (2024). Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e24929
29. Homayouni-Rad, A., Azizi, A., Oroojzadeh, P., & Pourjafar, H. (2020). Kluyveromyces marxianus as a probiotic yeast: A mini-review. Current Nutrition & Food Science, 16(8), 1163–1169. https://doi.org/10.2174/1573401316666200217113230
30. Jacques, N., & Casaregola, S. (2008). Safety assessment of dairy microorganisms: The hemiascomycetous yeasts. International Journal of Food Microbiology, 126(3), 321–326. https://doi.org/10.1016/j.ijfoodmicro.2007.08.020
31. Jiang, Y. L., Bao, W. J., Liu, F., Wang, G. S., Yurkov, A. M., Ma, Q., Du, Z. D., Chen, X. H., Zhao, W. N., Li, A. H., & Wang, Q. M. (2024). Proposal of one new family, seven new genera and seventy new basidiomycetous yeast species mostly isolated from Tibet and Yunnan provinces, China. Studies in Mycology, 109(1), 57–154. https://doi.org/10.3114/sim.2024.109.02
32. Johansen, P., & Jespersen, L. (2017). Impact of quorum sensing on the quality of fermented foods. Current Opinion in Food Science, 13, 16–25. https://doi.org/10.1016/j.cofs.2017.01.001
33. Karasu-Yalcin, S., Senses-Ergul, S., & Ozbas, Z. Y. (2017). Enzymatic characterization of yeast strains originated from traditional Mihalic cheese. Journal of Microbiology, Biotechnology and Food Sciences, 6(5), 1152–1156. https://doi.org/10.15414/jmbfs.2017.6.5.1152-1156
34. Kord, M., Salehi, M., Khodavaisy, S., Hashemi, S. J., Daie Ghazvini, R., Rezaei, S., Maleki, A., Elmimoghaddam, A., Alijani, N., Doomanlou, M., Ahmadikia, K., Rashidi, N., Pan, W., Boekhout, T., & Arastehfar, A. (2020). Epidemiology of yeast species causing bloodstream infection in Tehran, Iran (2015–2017): Superiority of 21-plex PCR over the VITEK2 system for yeast identification. Journal of Medical Microbiology, 69(5), 712–720. https://doi.org/10.1099/jmm.0.001189
35. Kurtzman, C., Fell, J. W., & Boekhout, T. (2011). The yeasts: A taxonomic study (5th ed.). Elsevier.
36. Lama, S., & Tamang, J. P. (2022). Isolation of yeasts from some homemade fermented cow-milk products of Sikkim and their probiotic characteristics. Fermentation, 8(12), 664. https://doi.org/10.3390/fermentation8120664
37. Li, Y. Y., Wang, M. M., Groenewald, M., Li, A. H., Guo, Y. T., Wu, F., Zhang, B. Q., Tanaka, E., Wang, Q. M., Bai, F. Y., & Begerow, D. (2022). Proposal of two new combinations, twenty new species, four new genera, one new family, and one new order for the anamorphic basidiomycetous yeast species in Ustilaginomycotina. Frontiers in Microbiology, 12, 777338. https://doi.org/10.3389/fmicb.2021.777338
38. Odumeru, J. A., Steele, M., Fruhner, L., Larkin, C., Jiang, J., Mann, E., & McNab, W. B. (1999). Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. Journal of Clinical Microbiology, 37(4), 944–949. https://doi.org/10.1128/JCM.37.4.944-949.1999
39. Ozmen Togay, S., Capece, A., Siesto, G., Aksu, H., Sandikci Altunatmaz, S., Yilmaz Aksu, F., Romano, P., & Karagul Yuceer, Y. (2020). Molecular characterization of yeasts isolated from traditional Turkish cheeses. Food Science and Technology, 40(4), 871–876. https://doi.org/10.1590/fst.24319
40. Peromingo, B., Andrade, M. J., Delgado, J., Sanchez-Montero, L., & Nunez, F. (2019). Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiology, 82, 269–276. https://doi.org/10.1016/j.fm.2019.01.024
41. Pincus, D. H. (2006). Microbial identification using the bioMérieux VITEK® 2 system. In Encyclopedia of rapid microbiological methods (pp. 1–32). Parenteral Drug Association
42. Riesute, R., Salomskiene, J., Moreno, D. S., & Gustiene, S. (2021). Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends in Food Science & Technology, 108, 1–10. https://doi.org/10.1016/j.tifs.2020.11.022
43. Roostita, R., & Fleet, G. H. (1996). The occurrence and growth of yeasts in Camembert and blue-veined cheeses. International Journal of Food Microbiology, 28, 393–404. https://doi.org/10.1016/0168-1605(95)00018-6
44. Staniszewski, A., & Kordowska-Wiater, M. (2021). Probiotic and potentially probiotic yeasts: Characteristics and food application. Foods, 10(6), 1306. https://doi.org/10.3390/foods10061306
45. Staniszewski, A., & Kordowska-Wiater, M. (2023). Probiotic yeasts and how to find them—Polish wines of spontaneous fermentation as a source for potentially probiotic yeasts. Foods, 12(18), 3392. https://doi.org/10.3390/foods12183392
46. Sulaiman, I. M., Miranda, N., Hook, W., Mendoza, J., Kumfert, Q., Barnes, T., Sung, K., Khan, S., Nawaz, M., Banerjee, J., Simpson, S., & Karem, K. (2023). A single-laboratory performance evaluation of MALDI-TOF MS in rapid identification of Staphylococcus aureus, Cronobacter sakazakii, Vibrio parahaemolyticus, and some closely related bacterial species of public health importance. Journal of AOAC International, 106(6), 1574–1588. https://doi.org/10.1093/jaoacint/qsad109
47. Suzzi, G., Lanorte, M. T., Galgano, F., Andrighetto, C., Lombardi, A., Lanciotti, R., & Guerzoni, M. E. (2001). Proteolytic, lipolytic, and molecular characterisation of Yarrowia lipolytica isolated from cheese. International Journal of Food Microbiology, 69(1–2), 69–77. https://doi.org/10.1016/S0168-1605(01)00574-8
48. Tofalo, R., Fusco, V., Böhnlein, C., Kabisch, J., Logrieco, A. F., Habermann, D., Cho, G. S., Benomar, N., Abriouel, H., Schmidt-Heydt, M., Neve, H., Bockelmann, W., & Franz, C. M. (2020). The life and times of yeasts in traditional food fermentations. Critical Reviews in Food Science and Nutrition, 60(18), 3103–3132. https://doi.org/10.1080/10408398.2019.1677553
49. Tullio, V. (2024). Probiotic yeasts: A developing reality? Journal of Fungi, 10(7), 489. https://doi.org/10.3390/jof10070489
50. Urcar Gelen, S., & Ceylan, Z. (2021). Isolation and identification of yeasts in white cheese. Journal of Advances in VetBio Science and Techniques, 6(2), 100–105. https://doi.org/10.31797/vetbio.907007
51. Vasdinyei, R., & Deak, T. (2003). Characterization of yeast isolates originating from Hungarian dairy products using traditional and molecular identification techniques. International Journal of Food Microbiology, 86(1–2), 123–130. https://doi.org/10.1016/S0168-1605(03)00251-4
52. Wally, P. (2022). Analysis of Escherichia coli bacteria content in fish meat with VITEK2 Compact. Asian Journal of Aquatic Sciences, 5(3), 335–341.
53. Wolfe, B. E., Button, J. E., Santarelli, M., & Dutton, R. J. (2014). Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell, 158, 422–433. https://doi.org/10.1016/j.cell.2014.05.041
54. Wyder, M. T., & Puhan, Z. (1999). Role of selected yeasts in cheese ripening: An evaluation in aseptic cheese curd slurries. International Dairy Journal, 9(2), 117–124. https://doi.org/10.1016/S0958-6946(99)00032-1
55. Zheng, X., Shi, X., & Wang, B. (2021). A review on the general cheese processing technology, flavor biochemical pathways, and the influence of yeasts in cheese. Frontiers in Microbiology, 12, 703284. https://doi.org/10.3389/fmicb.2021.703284
