THE PHYSICAL, OPTICAL AND RECONSTITUTION PROPERTIES OF APPLES SUBJECTED TO ULTRASOUND BEFORE DRYING

Main Article Content

A. Fijalkowska
M. Nowacka
D. Witrowa-Rajchert

Keywords

ultrasound, colour, texture, structure, reconstitution properties, drying

Abstract

The purpose of the study was to present the influence of ultrasound pre-treatment on the physical, optical and reconstitution properties before convective drying of apple slices. The apples were subjected to ultrasonic treatment (35 kHz) for 10, 20 and 30 minutes and dried at a temperature of 70°C and at an air velocity of 2 m/s. The ultrasonic waves reduced the drying time by 5-13% and affected the properties of dried apples. The longest pre-treatment resulted in colour changes and increased the porosity of dried apples. It also decreased the density, hardness and hygroscopic properties of dried apples.

Abstract 382 | PDF Downloads 252

References

Acevedo N.C., Briones V., Buera P. and Aguilera J.M. 2008. Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs. J. Food Eng. 85(2): 222-231.

Andrés A., Bilbao C. and Fito P. 2004. Drying kinetics of apple cylinders under combined hot air–microwave dehydration. J. Food Eng. 63 (1): 71-78.

Azoubel P.M., Baima M.A.M., Amorim M.R. and Oliveira S.S.B. 2010. Effect of ultrasound on banana cv Pacovan drying kinetics. J. Food Eng. 97(2): 194-198.

Choi M.H., Kim G.H. and Lee H.S. 2002. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 35(8): 753-759.

Chong C.H., Law C.L., Cloke M., Luqman C.A. and Wan Daud W.R. 2008. Drying kinetics and product quality of dried Chempedak. J. Food Eng. 88(4): 522-527.

Ciurzynska A., Janowicz M., Piotrowski P., Pomara?ska-?azuka W., Sitkiewicz I. and Lenart A. 2011. Reconstitutional properties of vacuum-dried strawberries (in Polish). Zeszyty Problemowe Post?pów Nauk Rolniczych (Advances of Agricultural Sciences Problem Issues) 569: 35-50.

Cybulska J., Zdunek A. and Konstankiewicz K. 2011. Calcium effect on mechanical properties of model cell walls and apple tissue. J. Food Eng. 102: 217-223.

Deng Y. and Zhao Y. 2008. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT – Food Sci. Technol. 41(9): 1575-1585.

Fenandes F.A.N. and Rodrigues S. 2009. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J. Food Eng. 90: 186-190.

Fenandes F.A.N., Gallao M.I. and Rodrigues S. 2008a. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT-Food Sci. Technol. 41(4): 604-610.

Fernandes F.A.N., Oliveira F.I.P. and Rodrigues S. 2008b. Use of ultrasound for dehydration of papayas. Food Bioprocess Technol. 1(4): 339-345.

Fernandes F.A.N., Linhares Jr. F.E. and Rodrigues S. 2008c. Ultrasound as pre-treatment for drying of pineapple. Ultrason. Sonochem. 15(6): 1049-1054.

Feunte-Blanco S., Sarabia E.R.F., Acosta-Aparicio V.M., Blanco-Blanco A. and Gallego-Juárez J.A. 2006. Food drying process by power ultrasound. Ultrasonics 44: 523-527.

Fijalkowska A., Nowacka M., Wiktor A., Sledz M., Witrowa-Rajchert D. 2016. Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. J. Food Process Eng. 9(3): 256-265.

Gamboa-Santos J., Montilla A., Cárcel J.A., Villamiel M. and Garcia-Perez J.V. 2014. Air-borne ultrasound application in the convective drying of strawberry. J. Food Eng. 128: 132-139.

Gamboa-Santos J., Soria A.C., Pérez-Mateos M., Carrasco J.A., Montilla A. and Villamiel M. 2013. Vitamin C content and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chem. 136(2): 782-788.

Gonçalves B., Silva A.P., Moutinho-Pereira J., Bacelar E., Rosa E. and Meyer A.S. 2007. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus Avium L.). Food Chem. 103(3): 976-984.

Hertog M.G.L., Feskens E.J.M., Hollman P.C.H., Katan M.B. and Kromhout D. 1993. Dietary antioxidants flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 342: 1007-1011.

Kek S.P., Chin N.L. and Yusof Y.A. 2013. Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioprod. Process. 91(4): 495-506.

Mulet A., Cárcel J.A., Sanjuán N. and Bon J. 2003. New Food Drying Technologies - Use of Ultrasound. Food Sci. Technol. Int. 9(3): 215-221.

Nowacka M., Tylewicz U., Laghi L., Dalla Rosa M. and Witrowa-Rajchert D. 2014. Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem. 144: 18-25.

Nowacka M. and Wedzik M. 2016. Effect of ultrasound treatment on microstructure, colour and carotenoid content in carrot tissue. Appl. Acoust. 103: 163-171.

Nowacka M., Wiktor A., Sledz M., Jurek N. and Witrowa-Rajchert D. 2012. Drying of ultrasound pretreated apple and its selected physical properties. J. Food Eng. 113(3): 427-433.

Nuncio-Jáuregui N., Calín-Sánchez A., Carbonell-Barrachina A. and Hernández F. 2014. Changes in quality parameters, proline, antioxidant activity and color of pomegranate (Punica granatum L.) as affected by fruit position within tree, cultivar and ripening stage. Scientia Horticulturae 165: 181-189.

Ozuna C., Álvarez-Arenas T.G., Riera E., Cárcel J.A. and Garcia-Perez J.V. 2014. Influence of material structure on air-borne ultrasonic application in drying. Ultrason. Sonochem. 21: 1235-1243.

Pingret D., Fabiano-Tixier A-S. and Chemat F. 2013. Degradation during application of ultrasound in food processing: A review. Food Control 31(2): 593-606.

Polish Standard PN-90/A-75101/03. Fruit and vegetable products. Determination of dry matter content by gravimetric method. (in Polish).

Puig A., Perez-Munuera I., Carcel J.A., Hernando I. and Garcia-Perez J.V. 2012. Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioprod. Process. 90(4): 624-632.

Rodríguez Ó., Santacatalina J.V., Simal S., Garcia-Perez J.V., Fermenia A. and Rosselló C. 2014. Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. J. Food Eng. 129: 21-29.

Rz?ca M. and Witrowa-Rajchert D. 2007. The influence of drying technique and storage conditions on dried apples reconstitution and hygroscopic properties (in Polish). Acta Agrophysica 9(2): 471-480.

Sch?ssler K., J?ger H. and Knorr D. 2012. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng. 108(1): 103-110.

Singh K.K. and Reddy B.S. 2006. Post-harvest physic-mechanical properties of orange peel and fruit. J. Food Eng. 73: 112-120.

Sledz M., Nowacka M., Wiktor A. and Witrowa-Rajchert D. 2013. Selected chemical and physico-chemical properties of microwave-convective dried herbs. Food and Bioprod. Process. 91(4): 421-428.

Vadivambal R. and Jayas D.S. 2007. Changes in quality of microwave-treated agricultural products-a review. Biosystems Eng. 98(1): 1-16.

Witrowa-Rajchert D., Wiktor A., Sledz M. and Nowacka M. 2014. Selected emerging technologies to enhance the drying process. A review. Dry. Technol. 32(11): 1386-1396.