NEW FORMULATIONS OF OLIVE-BASED PÂTÉ: DEVELOPMENT AND QUALITY

Main Article Content

L. Cosmai
F. Caponio
C. Summo
V. M. Paradiso
A. Cassone
A. Pasqualone

Keywords

characterization, olive-based pâté, sensory analysis, table olives, volatile composition

Abstract

The aim of this research was the chemical, microbiological, and sensory characterization of new ingredient formulations of olive-based pâtés, since few studies are present in the literature regarding table olive-based processed products. Three ingredient formulations were selected by consumer test on the basis of the scores of odour and taste descriptors, higher than 6. The chemical and sensory analyses allowed to clearly differentiate all ingredient formulations on the basis of both composition and volatile profile. Microbiological data were in the normal ranges for similar products and excluded the presence of pathogens. Finally, no off-flavour was perceveid in the tested formulations.

Abstract 429 | PDF Downloads 277

References

Abdul-Raouf U.M., Beuchat L.R. and Ammar M.S. 1993. Survival and growth of Escherichia coli O157:H7 on salad vegetables. Appl. Environ. Microbiol. 59: 1999.

Alvarenga N.B., Lidon F.J.C., Silva A., Martins G., Cruz T., Palma V. and Canada J. 2012. Production and characterization of green and black olive paste using cream of animal and vegetable origins. Emir. J. Food Agric. 24: 12.

Anon. 1996. Rapporti ISTISAN ISSN 1123–3117, 96/35.

Aponte M., Ventorino V., Blaiotta G., Volpe G., Farina V., Avellone G., Lanza C.M. and Moschetti G. 2010. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analysis. Food Microbiol. 27: 162.

Arroyo-López F.N., Querol A., Bautista-Gallego J. and Garrido-Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128: 189.

AOAC, 2000. “Official methods of analysis of Association of Official Analytical Chemists International” 17th ed. AOAC Press, Arlington, Method 982.27.

Bleve G., Tufariello M., Durante M., Grieco F., Ramires F.A., Mita G., Tasioula-Margari M. and Logrieco A.F. 2015. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamata table olives and developement of a protocol for the pre-selection of fermentation starters. Food Microbiol. 46: 368.

Campaniello D., Bevilacqua A., D’Amato D., Corbo M.R., Altieri C. and Sinigaglia M. 2005. Microbial characterization of table olives processed according to Spanish and natural styles. Food Technol. Biotechnol. 43: 289.

Carson J.F. 1987. Chemistry and biological properties of onions and garlic. Food Rev. Int. 3: 71.

Cavalli J.F., Fernandez X., Lizzani-Cuvelier L. and Loiseau A.M. 2004. Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 88: 151.

Christensen L.P., Edelenbos M. and Kreutzmann S. 2007. Fruits and vegetables of moderate climate. Ch. 7. In “Flavours and Fragrances Chemistry, Bioprocessing and Sustainability”. R.G. Berger (Ed.), p. 135. Springer-Verlag, Berlin.

Chu F.L. and Yaylayan V.A. 2008. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR. J. Agric. Food. Chem. 56: 10697.

Commission Regulation (EC) No 2073/2005. 2005. Official Journal of the European Union L 338/1, on microbiological criteria for foodstuffs.

Cremer D.R. and Eichner K. 2000. Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder. J. Agric. Food. Chem. 48: 2454.

Del Signore A. 2001. Chemometric analysis and volatile compounds of traditional balsamic vinegars from Modena. J. Food Eng. 50: 77.

Estévez M., Ventanas S. and Heinonena M. 2011. Formation of Strecker aldehydes between protein carbonyls – ?-aminoadipic and ?-glutamic semialdehydes – and leucine and isoleucine. Food Chem. 128: 1051.

Humaid S.A. and Jamal M.T. 2014. Effect of storage temperature on histamine formation and bacterial growth in whole three fish species (Rastrelliger kanagurta, Sardinella gibbosa and Lethrinus lentjan). Life Sci. J. 11: 927.

Hurtado A., Reguant C., Esteve-Zarzoso B., Bordons A. and Rozès N. 2008. Microbial population dynamics during the processing of Arbequina table olives. Food Res. Int. 41: 738.

International Olive Council (IOC). 2014. Key Figures On The Work Marked For Table Olives. Available at http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive.

International Olive Council (IOC). 2004. Trade Standard Applying to Table Olives. Resolution No. RES-2/91-IV/04.

ISO 8587. 1988. Sensory analysis. Methodology. Ranking. International Organization for Standardization.

IUPAC. 1979. International Union of Pure and Applied Chemistry Standard methods for the analysis of the oils, fats and derivatives. 6th ed. Pergamon Press, Oxford.

Lanza B. 2012. Nutritional and Sensory Quality of Table Olives. Ch. 16. In “Olive Germplasm – The Olive Cultivation, Table Olive and Olive Oil Industry in Italy”. I. Muzzalupo (Ed.), p. 343. InTech. Available from: http://www.intechopen.com/books/olive-germplasm-the-olive-cultivation-tableolive-and-olive-oil-industry-in-italy/nutritional-and sensory quality of-table olives. Rijeka, Croatia.

Malheiro R., Sousa A., Casal S., Bento A. and Pereira J.A. 2011. Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives. Food Chem. Toxicol. 49: 450.

Monta?o A., Sánchez A.H., Casado F.J., De Castro A. and Rejano L. 2003. Chemical profile of industrially fermented green olives of different varieties. Food Chem. 82: 297.

Panagoua E.Z., Schillingerb U., Franzb Charles M.A.P. and Nychasa George-John E. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 25: 348.

Pasqualone A., Nasti R., Montemurro C. and Gomes T. 2014. Effect of natural-style processing on the oxidative and hydrolytic degradation of the lipid fraction of table olives. Food Control. 37: 99.

Patir B., Gurel Inanli A., Oksuztepe G. and Ilhak O.I. 2006. Microbiological and chemical qualities of salted grey mullet (Chalcalburnus tarichii PALLAS, 1811). Int. J. Sci. Technol. 1: 91.

Pereira A.P., Pereira J.A., Bento A. and Estevinho M.L. 2008. Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food Chem Toxicol. 46: 2895.

Pérez R.A., Navarro T. and De Lorenzo C. 2007. HS–SPME analysis of the volatile compounds from spices as a source of flavour in ‘Campo Real’ table olive preparations. Flavour Frag J. 22: 265.

Romeo F.V., Piscopo A. and Poiana M. 2010. Effect of acidification and salt concentration on two black brined olives from Sicily. Grasas y Aceites. 61: 251.

Romeo V., Ziino M., Giuffrida D., Condurso C. and Verzera A. 2007. Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS. Food Chem. 101: 1272.

Rustad T. 2009. Lipid oxidation. Ch. 7. In “Handbook of Seafood and Seafood Products Analysis”. L.M.L. Nollet and F. Toldrá (Eds.), p. 87. CRC Press.

Sabatini N. and Marsilio V. 2008. Volatile compounds in table olives (Olea Europaea L., Nocellara del Belice cultivar). Food Chem. 107: 1522.

Sabatini N., Perri E. and Marsilio V. 2009. An investigation on molecular partition of aroma compounds in fruit matrix and brine medium of fermented table olives. Innov. Food Sci. Emerg. 10: 621.

Schwab W., Davidovich-Rikanati R. and Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. Plant J. 54: 712.

Soliman M.M., Fahmy A.A., El Sawy A.A. and Osman F. 1983. Effect of salting treatment on the flavour of oyster, donax and sea urchin. Agr. Biol Chem. 47: 1655.

Tassou C.C., Panagou E.Z. and Katsaboxakis K.Z. 2002. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 19: 605.