Micellar extraction of lipophilic metabolites from turmeric

Main Article Content

Misael Cortés Rodríguez https://orcid.org/0000-0003-3407-1635
Valentina Quintero Gómez https://orcid.org/0000-0002-3877-1076
Óscar Hernán Giraldo Osorio https://orcid.org/0000-0002-9213-6348

Keywords

bioactive compounds; Curcuma longa L.; curcumin; micellar extraction; sodium oleate

Abstract

This work aimed to optimize the micellar extraction of bioactive compounds from turmeric, using sodium oleate as surfactant. Response surface methodology was employed, considering the independent variables: mass ratio of turmeric/micellar solution (MS) of sodium oleate (MSSO), surfactant concentration and extraction time (tE). The turmeric/MSSO ratio and surfactant mainly affected the process. The optimal conditions were as follows: turmeric/MSSO = 0.01, surfactant = 1.525% and tE = 6.6 min; and the dependent variables: TPC = 181.6 ± 3.0 mg gallic acid equivalent/g turmeric dry basis (db); DPPH = 50.6 ± 1.1 mg Trolox equivalent (TE)/g turmeric db; ABTS•+ = 142.7 ± 7.9 mg TE/g turmeric db; curcumin = 11.6 mg/g turmeric db. Micellar extraction is a sustainable, economical, and simple process compared to the conventional ethanol method.


.

Abstract 93 | PDF Downloads 89 XML Downloads 45 HTML Downloads 0

References

Aboudiab, B., Tehrani-Bagha, A.R. and Patra, D., 2020. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 592: 124602. https://doi.org/10.1016/j.colsurfa.2020.124602
Ahmed, T., Rana, M.R., Hossain, M.A., Ullah, S. and Suzauddula, M., 2023. Optimization of ultrasound-assisted extraction using response surface methodology for total anthocyanin content, total phenolic content, and antioxidant activities of Roselle (Hibiscus sabdariffa L.) calyces and comparison with conventional Soxhlet extraction. Biomass Conversion and Biorefinery. 14: 28985–28999. https://doi.org/10.1007/s13399-023-03881-y
Alibade, A., Batra, G., Bozinou, E., Salakidou, C. and Lalas, S., 2020. Optimization of the extraction of antioxidants from winery wastes using cloud point extraction and a surfactant of natural origin (lecithin). Chemical Papers. 74(12): 4517–4524. https://doi.org/10.1007/s11696-020-01269-0
Array, E.J., Tonfack Djikeng, F., Kingne Kingne, F., Kingne, E.E. and Womeni, H.M., 2018. Effect of different extraction solvents on the phenolic content and antioxidant activity of turmeric (Curcuma longa) from South-West Region, Cameroon. Food Research. 3(1): 86–90. https://doi.org/10.26656/fr.2017.3(1).227
Azooz, E.A., Ridha, R.K. and Abdulridha, H.A., 2021. The fundamentals and recent applications of micellar system extraction for nanoparticles and bioactive molecules: A review. Nano Biomedicine and Engineering. 13(3): 264–278. https://doi.org/10.5101/nbe.v13i3.p264-278
Bhattarai, A., Chatterjee, S. and Niraula, T.P., 2018. Studies on the behavior of anionic surfactant sodiumdodecyl sulphate (SDS). LAP LAMBERT Academic Publishing. Available from: https://www.researchgate.net/publication/327105815_Studies_on_the_Behavior_of_Anionic_Surfactant_Sodiumdodecyl_Sulphate_SDS
Briones Muñoz, S. and Riera, M.A., 2020. Residuos de la cáscara de yuca y cera de abejas como potenciales materiales de partida para la producción de bioplásticos. Avances En Química. 15(1): 3–11. https://doi.org/10.53766/AVANQUIM/2020.15.01.01
Cacua, K., Ordoñez, F., Zapata, C., Herrera, B., Pabón, E. and Buitrago-Sierra, R., 2019. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 583: 123960. https://doi.org/10.1016/j.colsurfa.2019.123960
Calle Chumo, R.N., Calle Chumo, D.A., Gallegos Peredo, A.S. and Jarrin Oseguera, P.I., 2022. Influence of the solvent on the extraction of phenolic compounds from the coffee grounds by Soxhlet leaching. Ingeniería e Investigación. 43(1): e97521. https://doi.org/10.15446/ing.investig.97521
Cano-Higuita, D.M., Vélez, H.A.V. and Telis, V.R.N., 2015. Microencapsulation of turmeric oleoresin in binary and ternary blends of gum arabic, maltodextrin and modified starch. Ciência e Agrotecnologia. 39(2): 173–182. https://doi.org/10.1590/S1413-70542015000200009
Castaño-Peláez, H.I., Cortés-Rodríguez, M., Gil-González, J. and Gallón-Bedoya, M., 2022. Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology. 42: 58020. https://doi.org/10.1590/fst.58020
Chhouk, K., Wahyudiono, W., Kanda, H. and Goto, M., 2017. Comparison of conventional and ultrasound assisted supercritical carbon dioxide extraction of curcumin from turmeric (Curcuma longa L.). Engineering Journal. 21(5): 53–65. https://doi.org/10.4186/ej.2017.21.5.53
Doldolova, K., Bener, M., Lalikoğlu, M., Aşçı, Y.S., Arat, R. and Apak, R., 2021. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry. 353: 129337. https://doi.org/10.1016/J.FOODCHEM.2021.129337
Dong, D., Quan, E., Yuan, X., Xie, Q., Li, Z. and Wu, B., 2017. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of UGT-mediated metabolism. Molecular Pharmaceutics. 14(9): 2864–2874. https://doi.org/10.1021/acs.molpharmaceut.6b00851
Esparza, I.-N., 2021. Cúrcuma (Curcuma longa): Una revisión bibliográfica del procesamiento, propiedades funcionales y capacidad antimicrobiana. 120. Available from: https://repositorio.uchile.cl/bitstream/handle/2250/181556/Curcuma-curcuma-longa-una-revision-bibliografica-del-procesamiento.pdf?sequence=1
Faria, J.V., Valido, I.H., Paz, W.H.P., da Silva, F.M.A., de Souza, A.D.L., Acho, L.R.D., et al. 2021. Comparative evaluation of chemical composition and biological activities of tropical fruits consumed in Manaus, central Amazonia, Brazil. Food Research International. 139: 109836. https://doi.org/10.1016/j.foodres.2020.109836
Fernández-Marín, R., Fernandes, S.C.M., Andrés, M.A. and Labidi, J., 2021. Microwave-assisted extraction of Curcuma longa L. oil: Optimization, chemical structure and composition, antioxidant activity and comparison with conventional Soxhlet extraction. Molecules. 26(6): 1516. https://doi.org/10.3390/molecules26061516
Friesen, J.B., Liu, Y., Chen, S.-N., McAlpine, J.B. and Pauli, G.F., 2019. Selective depletion and enrichment of constituents in “Curcumin” and other Curcuma longa preparations. Journal of Natural Products. 82(3): 621–630. https://doi.org/10.1021/acs.jnatprod.9b00020
Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N.N.I.M., Begum, M.Y., et al. 2022. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 13: 820806. https://doi.org/10.3389/fphar.2022.820806
Gilda, S., Kanitkar, M., Bhonde, R. and Paradkar, A., 2010. Activity of water-soluble turmeric extract using hydrophilic excipients. LWT – Food Science and Technology. 43(1): 59–66. https://doi.org/10.1016/j.lwt.2009.07.004
Gökdemir, B., Baylan, N. and Çehreli, S., 2020. Application of a novel ionic liquid as an alternative green solvent for the extraction of curcumin from turmeric with response surface methodology: Determination and optimization study. Analytical Letters. 53(13): 2111–2121. https://doi.org/10.1080/00032719.2020.1730394
Gontsarik, M., Mohammadtaheri, M., Yaghmur, A. and Salentinig, S., 2018. pH-Triggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies. Biomaterials Science. 6(4): 803–812. https://doi.org/10.1039/C7BM00929A
Guo, N., Jiang, Y.-W., Kou, P., Liu, Z.-M., Efferth, T., Li, Y.-Y., et al. 2019. Application of integrative cloud point extraction and concentration for the analysis of polyphenols and alkaloids in mulberry leaves. Journal of Pharmaceutical and Biomedical Analysis. 167: 132–139. https://doi.org/10.1016/j.jpba.2019.02.002
He, S., Shi, J., Walid, E., Zhang, H., Ma, Y. and Xue, S.J., 2015. Reverse micellar extraction of lectin from black turtle bean (Phaseolus vulgaris): Optimisation of extraction conditions by response surface methodology. Food Chemistry. 166: 93–100. https://doi.org/10.1016/j.foodchem.2014.05.156
He, S., Xu, B. and Zhang, Y., 2019. Krafft temperature, critical micelle concentration, and rheology of “Pseudo‐Gemini” surfactant comprising fatty acid soap and bola‐type quaternary ammonium salt. Journal of Surfactants and Detergents. 22(6): 1269–1277. https://doi.org/10.1002/jsde.12300
Hemlata, Meena, P.R., Singh, A.P. and Tejavath, K.K., 2020. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega. 5(10): 5520–5528. https://doi.org/10.1021/acsomega.0c00155
Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A. and Terekhov, R.P., 2020. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. International Journal of Molecular Sciences. 21(3): 1131. https://doi.org/10.3390/ijms21031131
Ivanović, M., Makoter, K. and Islamčević Razboršek, M., 2021. Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic Zingiberaceae herbs. Plants. 10(3): 501. https://doi.org/10.3390/plants10030501
Khani, R., Sheykhi, R. and Bagherzade, G., 2019. An environmentally friendly method based on micro-cloud point extraction for determination of trace amount of quercetin in food and fruit juice samples. Food Chemistry. 293: 220–225. https://doi.org/10.1016/j.foodchem.2019.04.099
Kim, A.R., An, H.J., Jang, E.S., Lee, J.D. and Park, S.N., 2019. Preparation, physical characterization, and in vitro skin permeation of deformable liposomes loaded with taxifolin and taxifolin tetraoctanoate. European Journal of Lipid Science and Technology, 121(6): 201800501. https://doi.org/10.1002/ejlt.201800501
Lawag, I.L., Nolden, E.S., Schaper, A.A.M., Lim, L.Y. and Locher, C., 2023. A modified Folin–Ciocalteu assay for the determination of total phenolics content in honey. Applied Sciences. 13(4): 2135. https://doi.org/10.3390/app13042135
Le-Tan, H. and Jaeger, H., 2022. Impact of cell disintegration techniques on curcumin recovery. Food Engineering Reviews. 14(4): 655–672. https://doi.org/10.1007/s12393-022-09319-x
Li, K., Fu, L., Zhao, Y.-Y., Xue, S.-W., Wang, P., Xu, X.-L., et al. 2020a. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocolloids. 98: 105275. https://doi.org/10.1016/j.foodhyd.2019.105275
Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H., 2020b. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. 148: 80–89. https://doi.org/10.1016/j.plaphy.2020.01.006
Mandal, S. and Lahiri, S., 2022. A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchemical Journal. 175: 107150. https://doi.org/10.1016/j.microc.2021.107150
Morteza-Semnani, K., Saeedi, M., Akbari, J., Eghbali, M., Babaei, A., Hashemi, S.M.H., et al. 2022. Development of a novel nanoemulgel formulation containing cumin essential oil as skin permeation enhancer. Drug Delivery and Translational Research. 12(6): 1455–1465. https://doi.org/10.1007/s13346-021-01025-1
Motikar, P.D., More, P.R. and Arya, S.S., 2021. A novel, green environment-friendly cloud point extraction of polyphenols from pomegranate peels: A comparative assessment with ultrasound and microwave-assisted extraction. Separation Science and Technology. 56(6): 1014–1025. https://doi.org/10.1080/01496395.2020.1746969
Niazmand, R., Shahidi Noghabi, M. and Niazmand, A., 2021. Optimization of subcritical water extraction of phenolic compounds from Ziziphus jujuba using response surface methodology: Evaluation of thermal stability and antioxidant activity. Chemical and Biological Technologies in Agriculture. 8(1): 6. https://doi.org/10.1186/s40538-020-00203-6
Ogino, K., Kubota, T., Uchiyama, H. and Abe, M., 1988. Micelle formation and micellar size by a light scattering technique. Available from: https://www.jstage.jst.go.jp/article/jos1956/37/8/37_8_588/_pdf
Othman, R., Abdurasid, M.A., Mahmad, N. and Ahmad Fadzillah, N., 2019. Alkaline-based curcumin extraction from selected Zingiberaceae for antimicrobial and antioxidant activities. Pigment & Resin Technology. 48(4): 293–300. https://doi.org/10.1108/PRT-08-2018-0071
Panda, S.K., Nirvanashetty, S., Missamma, M. and Jackson-Michel, S., 2021. The enhanced bioavailability of free curcumin and bioactive-metabolite tetrahydrocurcumin from a dispersible, oleoresin-based turmeric formulation. Medicine. 100(27): e26601. https://doi.org/10.1097/MD.0000000000026601
Pandey, P., Grover, K., Dhillon, T.S., Kaur, A. and Javed, M., 2021. Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon. 7(5): e06880. https://doi.org/10.1016/j.heliyon.2021.e06880
Papayrata, C., Chumroenphat, T., Saensouk, P. and Saensouk, S., 2024. Diversity of curcuminoids, bioactive compounds and antioxidant activities in three species of Curcuma. Tropical Journal of Pharmaceutical Research. 23(8): 1291–1298. https://doi.org/10.4314/tjpr.v23i8.8
Park, J., Do, S., Lee, M., Ha, S. and Lee, K.-G., 2022. Preparation of turmeric powder with various extraction and drying methods. Chemical and Biological Technologies in Agriculture. 9(1): 39. https://doi.org/10.1186/s40538-022-00307-1
Patil, S.S., Bhasarkar, S. and Rathod, V.K., 2019. Extraction of curcuminoids from Curcuma longa: Comparative study between batch extraction and novel three phase partitioning. Preparative Biochemistry and Biotechnology. 49(4): 407–418. https://doi.org/10.1080/10826068.2019.1575859
Patil, S.S., Pathak, A. and Rathod, V.K., 2021. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. Ultrasonics Sonochemistry. 70: 105267. https://doi.org/10.1016/j.ultsonch.2020.105267
Patil, S.S. and Rathod, V.K., 2020. Synergistic effect of ultrasound and three phase partitioning for the extraction of curcuminoids from Curcuma longa and its bioactivity profile. Process Biochemistry. 93: 85–93. https://doi.org/10.1016/j.procbio.2020.02.031
Pinheiro, R.G.R., Granja, A., Loureiro, J.A., Pereira, M.C., Pinheiro, M., Neves, A.R., et al. 2020. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. European Journal of Pharmaceutical Sciences. 148: 105314. https://doi.org/10.1016/j.ejps.2020.105314
Rangel-Yagui, C.O., Pessoa, A. and Tavares, L.C., 2005. Micellar solubilization of drugs. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques. 8(2): 147–165. http://www.ncbi.nlm.nih.gov/pubmed/16124926
Rezaei, F., Eikani, M.H., Nosratinia, F. and Bidaroni, H.H., 2023. Optimization of ethanol-modified subcritical water extraction of curcuminoids from turmeric (Curcuma longa L.) rhizomes: Comparison with conventional techniques. Food Chemistry. 410: 135331. https://doi.org/10.1016/j.foodchem.2022.135331
Rumpf, J., Burger, R. and Schulze, M., 2023. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules. 233: 123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
Şahin, S., 2018. Optimization of ultrasonic-assisted extraction parameters for antioxidants from Curcuma longa L. Trakya University Journal of Natural Sciences. 19(2): 121–128. https://doi.org/10.23902/trkjnat.344985
Sahne, F., Mohammadi, M., Najafpour, G. and Moghadamnia, A.A., 2016. Extraction of bioactive compound curcumin from turmeric (Curcuma longa L.) via different routes: A comparative study. Pakistan Journal of Biotechnology. 13(3): 173–180.
Santos, M.S., Biscaia, E.C. and Tavares, F.W., 2017. Effect of electrostatic correlations on micelle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 533: 169–178. https://doi.org/10.1016/j.colsurfa.2017.07.079
Sepahpour, S., Selamat, J., Abdul Manap, M., Khatib, A. and Abdull Razis, A., 2018. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules. 23(2): 402. https://doi.org/10.3390/molecules23020402
Sergeev, V.V., Cheremisina, O.V., Fedorov, A.T., Gorbacheva, A.A. and Balandinsky, D.A., 2022. Interaction features of sodium oleate and oxyethylated phosphoric acid esters with the apatite surface. ACS Omega. 7(3): 3016–3023. https://doi.org/10.1021/acsomega.1c06047
Sharma, A., Ray, A. and Singhal, R.S., 2023. Co-extraction of turmeric (Curcuma longa L.) and dried coconut shreds by supercritical fluid extraction (SFE): Chemical and bioactivity profile. Journal of Cleaner Production. 382: 135313. https://doi.org/10.1016/j.jclepro.2022.135313
Singh, K., Srichairatanakool, S., Chewonarin, T., Prommaban, A., Samakradhamrongthai, R.S., Brennan, M.A., et al. 2022. Impact of green extraction on curcuminoid content, antioxidant activities and anti-cancer efficiency (in vitro) from turmeric rhizomes (Curcuma longa L.). Foods. 11(22): 3633. https://doi.org/10.3390/foods11223633
Skrypnik, L. and Novikova, A., 2020. Response surface modeling and optimization of polyphenols extraction from apple pomace based on nonionic emulsifiers. Agronomy. 10(1): 92. https://doi.org/10.3390/agronomy10010092
Śliwa, K. and Śliwa, P., 2020. The accumulated effect of the number of ethylene oxide units and/or carbon chain length in surfactants structure on the nano-micellar extraction of flavonoids. Journal of Functional Biomaterials. 11(3): 57. https://doi.org/10.3390/jfb11030057
Śliwa, P. and Śliwa, K., 2021. Nanomicellar extraction of polyphenols—Methodology and applications review. International Journal of Molecular Sciences. 22(21): 11392. https://doi.org/10.3390/ijms222111392
Śliwa, P., Śliwa, K., Sikora, E., Ogonowski, J., Oszmiański, J. and Nowicka, P., 2019. Incorporation of bioflavonoids from Bidens tripartite into micelles of non-ionic surfactants—Experimental and theoretical studies. Colloids and Surfaces B: Biointerfaces. 184: 110553. https://doi.org/10.1016/j.colsurfb.2019.110553
Suga, K., Kondo, D., Otsuka, Y., Okamoto, Y. and Umakoshi, H., 2016. Characterization of aqueous oleic acid/oleate dispersions by fluorescent probes and Raman spectroscopy. Langmuir. 32(30): 7606–7612. https://doi.org/10.1021/acs.langmuir.6b02257
Suliman, S.S., Othman, N., Mohamed Noah, N.F., Johari, K. and Ali, N., 2022. Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction. Materials Today: Proceedings. 65: 3081–3092. https://doi.org/10.1016/j.matpr.2022.05.532
Sun, D., Kang, S., Liu, C., Lu, Q., Cui, L. and Hu, B., 2016. Effect of zeta potential and particle size on the stability of SiO nanospheres as carrier for ultrasound imaging contrast agents. International Journal of Electrochemical Science. 11(10): 8520–8529. https://doi.org/10.20964/2016.10.30
Tyagi, A.K., Prasad, S., Yuan, W., Li, S. and Aggarwal, B.B., 2015. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: Comparison with curcumin. Investigational New Drugs. 33(6): 1175–1186. https://doi.org/10.1007/s10637-015-0296-5
Vinarov, Z., Dobreva, P. and Tcholakova, S., 2018. Effect of surfactant molecular structure on progesterone solubilization. Journal of Drug Delivery Science and Technology. 43: 44–49. https://doi.org/10.1016/j.jddst.2017.09.014
Wu, H., Liu, Z., Zhang, Y., Gao, B., Li, Y., He, X., et al. 2024. Chemical composition of turmeric (Curcuma longa L.) ethanol extract and its antimicrobial activities and free radical scavenging capacities. Foods. 13(10): 1550. https://doi.org/10.3390/foods13101550
Wu, J., Zhao, H., Xiao, D., Chuong, P.-H., He, J. and He, H., 2016. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis. Journal of Chromatography A. 1454: 1–8. https://doi.org/10.1016/j.chroma.2016.05.071
Yamini, Y., Feizi, N. and Moradi, M., 2020. Surfactant-based extraction systems. In: Poole, C.F., editor. Handbooks in separation science, liquid–phase extraction. UK: Elsevier. pp. 209–239. https://doi.org/10.1016/B978-0-12-816911-7.00007-4
Yang, Q.-Q., Cheng, L.-Z., Zhang, T., Yaron, S., Jiang, H.-X., Sui, Z.-Q., et al. 2020. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Industrial Crops and Products. 152: 112561. https://doi.org/10.1016/j.indcrop.2020.112561
Yusuf, H., Wijiani, N., Rahmawati, R.A., Primaharinastiti, R., Rijal, M.A.S. and Isadiartuti, D., 2021. Analytical method for the determination of curcumin entrapped in polymeric micellar powder using HPLC. Journal of Basic and Clinical Physiology and Pharmacology. 32(4): 867–873. https://doi.org/10.1515/jbcpp-2020-0491
Zarei, A.R., 2009. Spectrophotometric determination of trace amounts of furfural in water samples after mixed micelle-mediated extraction. Acta Chimica Slovenia. 7. Available from: https://acta-arhiv.chem-soc.si/56/56-2-322.pdf
Zhang, C., Yang, X., Dai, J., Liu, W., Yang, H. and Bai, Z., 2023. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic. Chinese Journal of Chemical Engineering. 58: 137–145. https://doi.org/10.1016/j.cjche.2022.11.003
Zhang, W., Liu, X., Fan, H., Zhu, D., Wu, X., Huang, X., et al. 2016. Separation and purification of alkaloids from Sophora flavescens Ait. by focused microwave-assisted aqueous two-phase extraction coupled with reversed micellar extraction. Industrial Crops and Products. 86: 231–238. https://doi.org/10.1016/j.indcrop.2016.03.052
Ziyatdinova, G.K. and Budnikov, H.C., 2021. Micellar extraction of active components from spices and evaluation of the Ce(IV)-based reducing capacity of the extracts. Journal of Analytical Chemistry. 76(9): 1065–1070. https://doi.org/10.1134/S1061934821090124
Ziyatdinova, G., Ziganshina, E., Cong, P.N. and Budnikov, H., 2016. Ultrasound-assisted micellar extraction of phenolic antioxidants from spices and antioxidant properties of the extracts based on coulometric titration data. Analytical Methods. 8(39): 7150–7157. https://doi.org/10.1039/C6AY02112C