Formulation and characteristics of bioactive compounds and antioxidant activity of moringa leaf herbal tea enriched with ginger (Zingiber officinale) and Javanese turmeric (Curcuma xanthorrhiza)

Main Article Content

Rienoviar
Lukman Junaidi
Ade Saepudin
Dwi Pangesti Handayani
Sintha Suhirman
Puji Astuti
Iceu Agustinisari
Eddy Sapto Hartanto
Santi Ariningsih
Nilawati
Feri Manoi
Ahmad Suhendra
Sitti Ramlah
Ardinal
Abdullah Bin Arif

Keywords

Abstract

The study aims to evaluate an herbal tea formula made from Moringa oleifera leaves, combined with ginger and Javanese turmeric, and to analyze its effects on the tea’s characteristics and antioxidant activities. Five herbal tea formulas were created using M. oleifera leaf powder and spice powder, with the spices consisting of 50% ginger (Zingiber officinale) and 50% Javanese turmeric (Curcuma xanthorrhiza). The formulations were as follows: F1 (100% M. oleifera), F2 (90% M. oleifera + 10% spices), F3 (85% M. oleifera + 15% spices), F4 (80% M. oleifera + 20% spices), and F5 (75% M. oleifera + 25% spices). These formulas were analyzed for changes in characteristics and antioxidant activity. The results showed that the inclusion of ginger and Javanese turmeric—especially in the F5 formulation—did not significantly alter the tea’s carbohydrate, fat, moisture, antioxidant activity, total flavonoid, or total phenolic content. However, protein and ash contents decreased with higher spice concentrations. Sensory evaluation revealed that the F5 formulation was preferred by panelists because of its improved taste and aroma, suggesting that incorporating these spices enhances the sensory appeal of M. oleifera herbal tea without compromising its antioxidant and nutritional properties.

Abstract 198 | PDF Downloads 90 XML Downloads 33 HTML Downloads 0

References

Abdelmohsen, U. R., & Elmaidomy, A. H. 2025. Exploring the therapeutic potential of essential oils: A review of composition and influencing factors. Front. Nat. Prod. 4: 1490511.
Al-Owaisi, M., Al-Hadiwi, N., Khan, S.A. 2014. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) fiori leaves. Asian Pacific J. Trop. Biomed. 4: 964–970.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Prot. 2: 875–877.
Ali, B. H., Blunden, G., Tanira, M. O., Nemmar, A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxic. 46(2): 409–420.
Anwar, F., Latif, S., Ashraf, M., Gilani, A. H. 2007. Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Res. 21: 17–25. https://doi.org/10.1002/ptr.2023.
AOAC. 2000. Official Methods of Analysis. 17th Edition. The Association of Official Analytical Chemists: Gaithersburg, MD, USA.
Baginska, S., Golonko, A., Swislocka, R., Lewandowski, W. 2023. Monoterpenes as medicinal agents: Exploring the pharmaceutical potential of p-Cymene, p-Cymenene, and γ-Terpinene. Acta Poloniae Pharmac. 80(6): 29–41.
Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils—A review. Food Chem. Toxic. 46(2): 446–475. https://doi.org/10.1016/j.fct.2007.09.106
Balasubramaniam, M., Sapuan, S., Hashim, I. F., Ismail, N. I., Yaakop, A. S., Kamaruzaman, N. A., Mokhtar, A. M. A. 2024. The properties and mechanism of action of plant immunomodulators in regulation of immune response—A narrative review focusing on Curcuma longa L., Panax ginseng CA Meyer and Moringa oleifera Lam. Heliyon. 10(7), e28261.
Chemat, F., Zill-e-Huma, Khan, M. K. 2012. Applications of ultrasound in food technology. Ultras Sonochem. 19(5): 975–983.

Devi, G., Sudhakar, K., Surekha, R., Kalpana, B. 2024. Moringa Oliefera: A phytochemical and biological study in combination with medicinal potential spices. Proc. Natl. Acad. Sci. India Sect. A. Phys. Sci. 94(2), 161–168.
Don, S.M., Rambli, M., Nore, B.F. 2024. Fermented beverages of natural herbs: Cymbopogon citratus, Zingiber officinale, Moringa oleifera, Mentha, and Curcuma longa. Biocat Agric Biotech. 58: 103201
Estiasih, T., Maligan, J. M., Witoyo, J. E., Mu’alim, A. A. H., Ahmadi, K., Mahatmanto, T., Zubaidah, E. 2025. Indonesian traditional herbal drinks: Diversity, processing, and health benefits. J Ethnic Foods. 12(1): 7.
Fguiri, I., Sboui, A., Yousf, N., Arroum, S., Dbara, M., Hammadi, M., Khorchani, T. 2024. Usefulness of Moringa oleifera seed extract as coagulant for the production of fresh camel cheese. Italian J. Food Sci. 36 (3): 243–253.
Furey, A., Moriarty, M., Bane, V., Kinsella, B., Lehane, M. 2013. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 115: 104–122.
Gomes, O. J. S., Leit˜ao, A., Gaspar, M. C., Vitorino, C., Sousa, J. J. S., de Sousa, H. C., Braga, M. E. M., Gando-Ferreira, L. M. 2024. Fortified chocolate mousse with powder and extract from Moringa oleifera leaves for nutritional value improvement. Food Chem. 441: 138338.
Gheorghita, G. R., Sora, C., Ion, S., Parvulescu, V. I., Tudorache, M. 2021. Cascade biocatalysis designed for the allylic oxidation of α-pinene. Catalysts. 11(1): 134. https://doi.org/10.3390/catal11010134.
González de Mejía, E., & Navarro, S. L. B. 2020. Ginger (Zingiber officinale): A review of its gastroprotective effects and mechanisms. Intern. J. Food Sci. Nut. 71(1): 1–15.
Harish, R., & Shivanandappa, T. 2006. Antioxidant activity and hepatoprotective potential of Phyllanthus niruri. Food Chem. 95: 180–185.
He, Y., Liu, S., Wu, H., Zou, D., Han, D. 2019. Ginger and its bioactive compounds are functional ingredients against obesity and its associated disorders: A systematic review and meta-analysis. Food Res. Intern. 123: 289–298.
Hernández-Fuentes, G. A., Sanchez-Ramirez, C. A., Cortes-Alvarez, S. I., Rodriguez-Hernández, A., Cabrera-Medina, A. O., Moy-López, N. A., Delgado-Enciso, I. 2025. Moringa oleifera leaf infusion as a functional beverage: Polyphenol content, antioxidant capacity, and its potential role in the prevention of metabolopathies. Life. 15(4): 636. https://doi.org/10.3390/life15040636
Kashyap, P., Kumar, S., Riar, C.S., Jindal, N., Baniwal, P., Guine, R.P.F., Correia, P.M.R., Mehra, R., Kumar, H. 2022. Recent advances in drumstick (Moringa oleifera) leaves bioactive compounds: composition, health benefits, bioaccessibility, and dietary applications. Antioxidants. 11: 402.
Kataoka, H., Lord, H. L., Pawliszyn, J. 2000. Applications of solid-phase microextraction in food analysis. J. Chromat. A. 880(1–2): 35–62. https://doi.org/10.1016/S0021-9673(00)00440-5
Maisaroh, A. P., Astuti, S. W.B., Restiawaty, E., Bindar, Y. 2025. Headspace gas chromatography/mass spectroscopy analysis of volatile organic compounds in red ginger (Zingiber officinale var. Rubrum): Effects of drying on chemical and functional properties. IOP Conf. Series: Earth Envir. Sci. 1477: 012068.
Makita, C., Chimuka, L., Steenkamp, P., Cukrowska, E., Madala, E. 2016. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. South Afric. J. Bot. 105: 116–122.
Manalu, L., Adinegoro, H., Yustiningsih, N., Astuti, L. R., Maisaroh, P. W., Subandrio, P. O. B., Atmaji, P., Hidayat, T., Henanto, H., Asgar, A., Nasori, A. S., Triyono, A., Elya, B., Arif, A. B. 2025. Impact of drying methods on bioactive compounds and antioxidant properties of Kalanchoe ceratophylla. Scientifica. 2025: 7146758. https://doi.org/10.1155/sci5/7146758
Mbikay, M. 2012. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmac. 3: Article ID 24.
Munir, M., Khan, I., Almutairi, N.S., Almutairi, A.H., Khan, B., Mehboob, N. 2025. Effect of moringa leaves powder on body weight, glycemic status, lipid profile, and blood pressure in overweight individuals with hyperlipidemia. Ita. J. Food Sci. 37(1): 210–219.
Nielsen, N. A., Bech-Larsen, T., Grunert, K. G. 1998. Consumer purchase motives and product perceptions: A laddering study on vegetable oil in three countries. Food Qual. Pref. 9: 455–466.
Panda, D., & Singh, D. 2025. Physico-chemical evaluation of herbal tea(s) formulated from spearmint (mentha spicata) and moringa (Moringa oleifera) leaves and added spices. Arch. Curr. Res. Int, 25(9), 68-75.
Pietrzak, W., Nowak, R., Gawlik-Dziki, U., Lemieszek, M. K., Rzeski, W. 2017. LC-ESI-MS/MS identification of biologically active phenolic compounds in mistletoe berry extracts from different host tree. Molecules. 22: 624.
Pongpiriyadacha, Y., Chanchao, C., Chaijaroenkul, W. 2020. Enhancement of ginger (Zingiber officinale) by-product value for tea production: Quality evaluation and antioxidant activities. Plants. 9(12): 1715.
Prabakaran, M., & Krishnaswamy, R. 2020. Moringa oleifera leaf extract as a potent antioxidant in fresh fruit juice. Food Chem. 316: 126238.
Pradanto, S.A., Yunianta, Y., Firdaus, M. 2022. Preliminary study on bioactive compounds of functional drinks of turmeric rhizome, moringa leaf, and brown seaweed mixture to its potential applications in diabetes mellitus treatment. AIP Conf. Proc. 2513: 030004.
Rahmani, A. H., Shabrmi, F. M. A., Aly, S. M. 2014. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. IJPPP. 6(2): 125.
Rahmat, J., Lee, & Kang, Y. 2021. Javanese turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, phytochemistry, biotechnology, and pharmacological activities. Evid. Based Compl. Alter. Med. 2021: 9960813.
Rockwood, J. L., Anderson, B. G., Casamatta, D. A. 2013. Potential uses of moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. Intern. J. Phyto. Res. 3: 61–71.
Rozin, P., Hanko, K., Durlach, P. 2006. Self-prediction of hedonic trajectories for repeated use of body products and foods: Poor performance, not improved by a full generation of experience. Appetite. 46: 297–30. https://doi.org/10.1016/j.appet.2006.01.016.
Sánchez-Ortiz, L. K., S´anchez-Quezada, V., Gayt´an-Martínez, M., Cuellar-Nu˜nez, M. L., Loarca-Pi˜n, G. 2024. Influence in physicochemical, nutritional, and antioxidant properties by addition Moringa oleifera leaves in Avena sativa bread. Food Chem. 460: 140743.
Saini, R. K., Sivanesan, I., Keum, Y. S. 2016. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech. 6(2): 203. https://doi.org/10.1007/s13205-016-0526-3
Sarker, U., & Oba, S. 2018. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content. Food Chem. 252: 72–8.
Shaikh, S., Padmere, M., Khanum, H., Shivaswamy, R., Yannam, S. K., Borse, B. B. 2025. Spiced moringa mix: Physio-chemical characterization and quantitative analysis. Ind. J. Chem. Technol. 32: 433–440.
Sharifi-Rad, J., Varoni, E. M., Salehi, B., Sharifi-Rad, M., Matthews, K. R., Ayatollahi, S. A., Kobarfard, F. 2017. Plants of the genus zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules. 22: 2145.
Silva, R. C. E., Costa, J. S. D., Figueiredo, R. O. D., Setzer, W. N., Silva, J. K. R. D., Maia, J. G. S., Figueiredo, P. L. B. (2021). Monoterpenes and sesquiterpenes of essential oils from Psidium species and their biological properties. Molecules. 26(4): 965. https://doi.org/10.3390/molecules26040965
Stohs, S. J., & Hartman, M. J. 2015. Review of the safety and efficacy of moringa oleifera. Phyto. Res. 29(6): 796–804.
Todaro, A., Arena, E., Timpone, R., Parafati, L., Proetto, I., Pesce, F., Pisana, F., Fallico, B., Palmeri, R. 2023. Use of concentrated fruit juice extracts to improve the antioxidant properties in a soft drink formulation. Intern J Gastron Food Sci. 31, 100649. https://doi.org/10.1016/j.ijgfs.2022.100649
Urala, N., & Lahteenmaki, L. 2004. Attitudes behind consumers’ willingness to use functional foods. Food Qual. Pref. 15: 793–803. https://doi.org/10.1016/j.foodqual.2004.02.008
Viegas, C., Sá, F., Mateus, M., Santos, P., Almeida, B., Caetano, L.A., Gomes, A.Q., Viegas, S. 2020. Commercial green tea from Portugal: Comprehensive microbiologic analyses. Intern. J. Food Microbiol. 333: 108795. https://doi.org/10.1016/j.ijfoodmicro.2020.108795
Vázquez-Araújo, L., Chambers, E., Adhikari, K., Carbonell-Barrachina, A.A. 2010. Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J. Food Sci. 75(7): 398–404. https://doi.org/10.1111/j.1750-3841.2010.01779.x
Vázquez-León, L.A., Páramo-Calderón, D.F., Robles-Olvera, V.J. 2017. Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: Influence of climatic factors, tree age, and soil parameters. Eur. Food Res. Technol. 243: 1593–1608.
Wang, Y., Zhang, D., Liu, Y., Wang, D., Du, G. 2021. Anti-inflammatory and antioxidant activities of ginger extract and its essential oil: A comprehensive review. Intern. J. Food Prop. 24(1): 1961–1971.
Wang, Y., Jiang, Y., Han, C., Zhou, L., Hu, H., Song, H., Li, W. 2025. Ginger (Zingiber officinale Roscoe) bioactive components: Potential resources for kidney health. J. Food Biochem. Article ID 2625586. https://doi.org/10.1155/jfbc/2625586
Widyaningsih, T.D., Rachmawati, M., E Prabawati, E., Winarsih, S. 2021. Anti-inflammatory effects of functional beverage from a mixture of moringa leaves, pandanus leaves, and red ginger in mice induced with monosodium urate crystal. IOP Conf. Series: Earth and Envir. Sci. 733: 012129.
Yang, M., Tao, L., Kang, X. R., Wang, Z. L., Su, L. Y., Li, L. F., Gu, F., Zhao, C. C., Sheng, J., Tian, Y. 2023. Moringa oleifera Lam. leaves as new raw food material: A review of its nutritional composition, functional properties, and comprehensive application. Trends. in Food Sci. Technol. 138: 399–416.
Zhang, J., Zhang, M., Bhandari, B., Wang, M. 2024. Basic sensory properties of essential oils from aromatic plants and their applications: A critical review. Crit. Rev Food Sci. Nut. 64(20): 6990–7003. https://doi.org/10.1080/10408398.2023.2177611