Effect of fresh and dried broccoli (Brassica oleracea var. italica) florets and stems on properties of camel kefirs
Main Article Content
Keywords
antioxidant activity, bioactive components, broccoli florets, broccoli stems, camel kefir, drying process
Abstract
n the present study, the effect of the addition of fresh and dried broccoli florets and stems to kefir samples produced from camel milk with a rich nutrient profile on physicochemical and biochemical properties was investigated. Statistically very significant (p<0.01) differences were determined between the kefir samples in terms of antioxidant activity, organic acids, Na and some phenolic compounds. It was revealed that fresh and dried broccoli stems, which are evaluated as waste, provide positive contributions to camel kefir in terms of bioactive components and antioxidant capacity and, in some cases, are even superior to broccoli florets.
References
Abdelazez, A., Abd-elmotaal, H., & Abady, G. (2024). Exploring the potential of camel milk as a functional food: Physicochemical characteristics, bioactive components, innovative therapeutic applications, and development opportunities analysis. Food Materials Research, 4, e031. https://doi.org/10.48130/fmr-0024-0020
Ait El Alia, O., Zine-Eddine, Y., Chaji, S., Boukrouh, S., Boutoial, K., & Faye, B. (2025). Global camel milk industry: A comprehensive overview of production, consumption trends, market evolution, and value chain efficiency. Small Ruminant Research, 243, 107441. https://doi.org/10.1016/j.smallrumres.2025.107441
Al-Ayadhi, L. Y., Halepoto, D. M., Al-Dress, A. M., Mitwali, Y., & Zainah, R. (2015). Behavioral benefits of camel milk in subjects with autism spectrum disorder. Journal of the College of Physicians and Surgeons Pakistan, 25(11), 819–823.
Ali, W., Akyol, E., Ceyhan, A., Dilawar, S., Firdous, A., Zia ul Qasim, M., & Ahmad, M. M. (2019). Milk production and composition in camel and its beneficial uses: A review. Turkish Journal of Agriculture – Food Science and Technology, 7(12), 2142–2147. https://doi.org/10.24925/turjaf.v7i12.2142-2147.2905
Almasri, R. S., Bedir, A. S., Ranneh, Y. K., El-Tarabily, K. A., & Al Raish, S. M. (2024). Benefits of camel milk over cow and goat milk for infant and adult health in fighting chronic diseases: A review. Nutrients, 16(22), 3848. https://doi.org/10.3390/nu16223848
Anand, S., & Barua, M. K. (2022). Modeling the key factors leading to post-harvest loss and waste of fruits and vegetables in the agri-fresh produce supply chain. Computers and Electronics in Agriculture, 198, 106936. https://doi.org/10.1016/j.compag.2022.106936
Aral, S., & Beşe, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577–584. https://doi.org/10.1016/j.foodchem.2016.04.128
Arroum, S., Sboui, A., Fguiri, I., Dbara, M., Ayeb, N., Hammadi, M., & Khorchani, T. (2025). Influence of kefir grain concentration on the nutritional, microbiological, and sensory properties of camel milk kefir and characterisation of some technological properties. Fermentation, 11(4), 170. https://doi.org/10.3390/fermentation11040170
Atwaa, E. S. H., Shahein, M. R., Alrashdi, B. M., Hassan, M. A. A., Alblihed, M. A., Dahran, N., Ali, F. A. Z., & Elmahallawy, E. K. (2022). Effects of fermented camel milk supplemented with Sidr fruit (Ziziphus spina-christi L.) pulp on hyperglycaemia in streptozotocin-induced diabetic rats. Fermentation, 8(6), 269. https://doi.org/10.3390/fermentation8060269
Baniasadi, M., Azizkhani, M., Saris, P. E. J., & Tooryan, F. (2022). Comparative antioxidant potential of kefir and yoghurt of bovine and non-bovine origins. Journal of Food Science and Technology, 59(4), 1307–1316. https://doi.org/10.1007/s13197-021-05139-9
Barazi, Ü., & Arslan, S. (2024). Enhancement of kefir functionality by adding black elderberry and evaluation of its quality during storage. Food Science and Nutrition, 12(11), 9325–9339. https://doi.org/10.1002/fsn3.4481
Bas-Bellver, C., Barrera, C., & Seguí, L. (2024). Impact of thermophysical and biological pretreatments on antioxidant properties and phenolic profile of broccoli stem products. Foods, 13(22), 3585. https://doi.org/10.3390/foods13223585
Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Gerbi, V., & Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yoghurt. LWT – Food Science and Technology, 63(2), 1145–1154. https://doi.org/10.1016/j.lwt.2015.03.113
Bhandari, S. R., & Kwak, J.-H. (2014). Seasonal variation in phytochemicals and antioxidant activities in different tissues of various broccoli cultivars. African Journal of Biotechnology, 13(4), 604–615. https://doi.org/10.5897/AJB2013.13432
Bolea, C., Turturică, M., Stănciuc, N., & Vizireanu, C. (2016). Thermal degradation kinetics of bioactive compounds from black rice flour (Oryza sativa L.) extracts. Journal of Cereal Science, 71, 160–166. https://doi.org/10.1016/j.jcs.2016.08.010
Borja-Martínez, M., Lozano-Sánchez, J., Borrás-Linares, I., Pedreño, M. A., & Sabater-Jara, A. B. (2020). Revalorization of broccoli by-products for cosmetic uses using supercritical fluid extraction. Antioxidants, 9(12), 1195. https://doi.org/10.3390/antiox9121195
Campas-Baypoli, O. N., Sánchez-Machado, D. I., Bueno-Solano, C., Núñez-Gastélum, J. A., Reyes-Moreno, C., & López-Cervantes, J. (2009). Biochemical composition and physicochemical properties of broccoli flours. International Journal of Food Sciences and Nutrition, 60(S4), 163–173. https://doi.org/10.1080/09637480802702015
Cartea, M. E., Francisco, M., Soengas, P., & Velasco, P. (2011). Phenolic compounds in Brassica vegetables. Molecules, 16(1), 251–280. https://doi.org/10.3390/molecules16010251
Ciniviz, M., & Yildiz, H. (2020). Determination of phenolic acid profiles by HPLC in lacto-fermented fruits and vegetables (pickle): Effect of pulp and juice portions. Journal of Food Processing and Preservation, 44(7), e14542. https://doi.org/10.1111/jfpp.14542
Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269(2), 291–304. https://doi.org/10.1016/j.canlet.2008.04.018
Costa, C., Lucera, A., Marinelli, V., Del Nobile, M. A., & Conte, A. (2018). Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology, 55(10), 4174–4183. https://doi.org/10.1007/s13197-018-3347-z
Dufoo-Hurtado, M. D., Vazquez-Barrios, M. E., Ramirez-Gonzalez, E., Vazquez-Celestino, D., Rivera-Pastrana, D. M., & Mercado-Silva, E. (2018). Nutritional, nutraceutical and functional properties of flours obtained from broccoli waste material dried at different temperatures. Acta Horticulturae, 1292, 137–144. https://doi.org/10.17660/ActaHortic.2020.1292.18
Durak, E., & Yıldırım, M. (2017). Yield and quality compounds of broccoli (Brassica oleracea L. cv. Beaumont) as affected by different irrigation levels. ÇOMÜ Ziraat Fakültesi Dergisi, 5(1), 13–20.
García, S. L. R., & Raghavan, V. (2022). Microwave-assisted extraction of phenolic compounds from broccoli (Brassica oleracea) stems, leaves, and florets: Optimization, characterisation, and comparison with maceration extraction. Recent Progress in Nutrition, 2(2), 1–23. https://doi.org/10.21926/rpn.2202011
Gudiño, I., Casquete, R., Martín, A., Wu, Y., & Benito, M. J. (2024). Comprehensive analysis of bioactive compounds, functional properties, and applications of broccoli by-products. Foods, 13(23), 3918. https://doi.org/10.3390/foods13233918
Gül, L. B., Bekbay, S., Akgün, A., & Gül, O. (2023). Effect of oleaster (Elaeagnus angustifolia L.) flour addition combined with high-pressure homogenization on the acidification kinetics, physicochemical, functional, and rheological properties of kefir. Food Science and Nutrition, 11(9), 5325–5337. https://doi.org/10.1002/fsn3.3491
Ho, T. M., Zou, Z., & Bansal, N. (2022). Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Research International, 153, 110870. https://doi.org/10.1016/j.foodres.2021.110870
Hong, H., Lim, J. M., Kothari, D., Kwon, S. H., Kwon, H. C., Han, S. G., & Kim, S. K. (2021). Antioxidant properties and diet-related α-glucosidase and lipase inhibitory activities of yoghurt supplemented with safflower (Carthamus tinctorius L.) petal extract. Food Science of Animal Resources, 41(1), 122–134. https://doi.org/10.5851/kosfa.2020.e88
Hwang, J.-H., & Lim, S.-B. (2015). Antioxidant and anticancer activities of broccoli by-products from different cultivars and maturity stages at harvest. Preventive Nutrition and Food Science, 20(1), 8–14. https://doi.org/10.3746/pnf.2015.20.1.8
Karwacka, M., Ciurzyńska, A., Lenart, A., & Janowicz, M. (2020). Sustainable development in the agri-food sector in terms of the carbon footprint: A review. Sustainability, 12(16), 6463. https://doi.org/10.3390/su12166463
Krupa-Kozak, U., Drabińska, N., Bączek, N., Šimková, K., Starowicz, M., & Jeliński, T. (2021). Application of broccoli leaf powder in gluten-free bread: An innovative approach to improve its bioactive potential and technological quality. Foods, 10(4), 819. https://doi.org/10.3390/foods10040819
Kulaksız Günaydı, Z. E., & Ayar, A. (2022). Phenolic compounds, amino acid profiles, and antibacterial properties of kefir prepared using freeze-dried Arbutus unedo L. and Tamarindus indica L. fruits and sweetened with stevia, monk fruit sweetener, and aspartame. Journal of Food Processing and Preservation, 46, e16767. https://doi.org/10.1111/jfpp.16767
Kumar, B. R. (2017). Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). Journal of Pharmaceutical Analysis, 7(6), 349–364. https://doi.org/10.1016/j.jpha.2017.06.005
Kumar, D., Verma, A. K., Chatli, M. K., Singh, R., Kumar, P., Mehta, N., & Malav, O. P. (2016). Camel milk: Alternative milk for human consumption and its health benefits. Nutrition and Food Science, 46(2), 217–227. https://doi.org/10.1108/NFS-07-2015-0085
Kumar, H., Bhardwaj, K., Cruz-Martins, N., Sharma, R., Siddiqui, S. A., Dhanjal, D. S., Singh, R., Chopra, C., Dantas, A., Verma, R., Dosoky, N. S., & Kumar, D. (2022). Phyto-enrichment of yoghurt to control hypercholesterolaemia: A functional approach. Molecules, 27(11), 3479. https://doi.org/10.3390/molecules27113479
Li, S. J., Liu, S. C., Lin, X. H., Grierson, D., Yin, X. R., & Chen, K. S. (2022). Citrus heat shock transcription factor CitHsfA7-mediated citric acid degradation in response to heat stress. Plant, Cell & Environment, 45(1), 95–104. https://doi.org/10.1111/pce.14207
Li, Y., & Zhang, T. (2013). Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncology, 9(8), 1097–1103. https://doi.org/10.2217/fon.13.108
Liu, M., Zhang, L., Ser, S. L., Cumming, J. R., & Ku, K.-M. (2018). Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules, 23(4), 900. https://doi.org/10.3390/molecules23040900
Maillard, M. N., & Berset, C. (1995). Evolution of antioxidant activity during kilning: Role of insoluble bound phenolic acids of barley and malt. Journal of Agricultural and Food Chemistry, 43(7), 1789–1793.
Marchiani, R., Bertolino, M., Ghirardello, D., McSweeney, P. L. H., & Zeppa, G. (2016). Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. Journal of Food Science and Technology, 53(3), 1585–1596. https://doi.org/10.1007/s13197-015-2105-8
Muelas, R., Romero, G., Díaz, J. R., Monllor, P., Fernández-López, J., Viuda-Martos, M., Cano-Lamadrid, M., & Sendra, E. (2022). Quality and functional parameters of fermented milk obtained from goat milk fed with broccoli and artichoke plant by-products. Foods, 11(17), 2601. https://doi.org/10.3390/foods11172601
Muller, S., Jardine, W. G., Evans, B. W., Vietor, R. J., Snape, C. E., & Jarvis, M. C. (2003). Cell wall composition of vascular and parenchyma tissues in broccoli stems. Journal of the Science of Food and Agriculture, 83(13), 1289–1292. https://doi.org/10.1002/jsfa.144
Núñez-Gómez, V., González-Barrio, R., Baenas, N., Moreno, D. A., & Periago, M. J. (2022). Dietary-fibre-rich fractions isolated from broccoli stalks as a potential functional ingredient with phenolic compounds and glucosinolates. International Journal of Molecular Sciences, 23(21), 13309. https://doi.org/10.3390/ijms232113309
Page, V., & Feller, U. (2015). Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy, 5(3), 447–463. https://doi.org/10.3390/agronomy5030447
Popp, M., Lied, W., Meyer, A. J., Richter, A., Schiller, P., & Schwitte, H. (1996). Sample preservation for determination of organic compounds: Microwave versus freeze-drying. Journal of Experimental Botany, 47(10), 1469–1473. https://academic.oup.com/jxb/article/47/10/1469/565939
Quizhpe, J., Ayuso, P., Rosell, M. D. L. Á., Peñalver, R., & Nieto, G. (2024). Brassica oleracea var. italica and their by-products as source of bioactive compounds and food applications in bakery products. Foods, 13(21), 3513. https://doi.org/10.3390/foods13213513
Rajković, M. B., Minić, D. P., Milinčić, D., & Zdravković, M. (2020). Circular economy in food industry. Zaštita Materijala, 61(3), 229–250. https://doi.org/10.5937/zasmat2003229R6
Réblová, Z. (2012). Effect of temperature on the antioxidant activity of phenolic acids. Czech Journal of Food Sciences, 30(2), 171–175. https://doi.org/10.17221/57/2011-CJFS
Sakandar, H. A., Ahmad, S., Perveen, R., Aslam, H. K. W., Shakeel, A., Sadiq, F. A., & Imran, M. (2018). Camel milk and its allied health claims: A review. Progress in Nutrition, 20(Supplement 1), 15–29. https://doi.org/10.23751/pn.v20i1-S.5318
Schmidt, S., Zietz, M., Schreiner, M., Rohn, S., Kroh, L. W., & Krumbein, A. (2010). Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chemistry, 119(4), 1293–1299. https://doi.org/10.1016/j.foodchem.2009.09.004
Serna-Barrera, M. A., Bas-Bellver, C., Seguí, L., Betoret, N., & Barrera, C. (2024). Exploring fermentation with lactic acid bacteria as a pretreatment for enhancing antioxidant potential in broccoli stem powders. AIMS Microbiology, 10(2), 255–272. https://doi.org/10.3934/microbiol.2024013
Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Kim, S. H., & Wong, J. W. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325, 124684. https://doi.org/10.1016/j.biortech.2021.124684
Shashirekha, M. N., Mallikarjuna, S. E., & Rajarathnam, S. (2015). Status of bioactive compounds in foods, with focus on fruits and vegetables. Critical Reviews in Food Science and Nutrition, 55(10), 1324–1339. https://doi.org/10.1080/10408398.2012.692736
Tan, C. H., Hii, C. L., Borompichaichartkul, C., Phumsombat, P., Kong, I., & Pui, L. P. (2022). Valorization of fruits, vegetables, and their by-products: Drying and bio-drying. Drying Technology, 40(8), 1514–1538. https://doi.org/10.1080/07373937.2022.2068570
Terzioğlu, M. E., & Bakırcı, İ. (2024). Comparison of amino acid profile, ACE inhibitory activity, and organic acid profile of cow and goat yogurts produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and classical yogurt culture. Probiotics and Antimicrobial Proteins, 16(5), 1566–1582. https://doi.org/10.1007/s12602-023-10123-0
Terzioğlu, M. E., Edebali, E., & Bakırcı, İ. (2024). Investigation of the elemental contents, functional and nutraceutical properties of kefirs enriched with Spirulina platensis, an eco-friendly and alternative protein source. Biological Trace Element Research, 202(6), 2878–2890. https://doi.org/10.1007/s12011-023-03844-4
Terzioğlu, M. E., Bakırcı, İ., Oz, E., Brennan, C. S., Huppertz, T., Amarowicz, R., Khan, M. R., Elobeid, T., Aadil, R. M., & Oz, F. (2023). Comparison of camel, buffalo, cow, goat, and sheep yoghurts in terms of various physicochemical, biochemical, textural and rheological properties. International Dairy Journal, 146, 105749. https://doi.org/10.1016/j.idairyj.2023.105749
Thomas, M., Badr, A., Desjardins, Y., Gosselin, A., & Angers, P. (2018). Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chemistry, 245, 1204–1211. https://doi.org/10.1016/j.foodchem.2017.11.021
Villaño, D., Fernández-Pan, I., Arozarena, Í., Ibañez, F. C., Vírseda, P., & Beriain, M. J. (2023). Revalorisation of broccoli crop surpluses and field residues: Novel ingredients for food industry uses. European Food Research and Technology, 249(12), 3227–3237. https://doi.org/10.1007/s00217-023-04362-2
Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., & Duan, X. (2020). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 38(10), 1378–1388. https://doi.org/10.1080/07373937.2019.1656642
Yang, Z., Han, Y., Gu, Z., Fan, G., & Chen, Z. (2008). Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. Innovative Food Science & Emerging Technologies, 9(3), 341–347. https://doi.org/10.1016/j.ifset.2007.09.001
Zhang, J., Cao, J., Pei, Z., Wei, P., Xiang, D., Cao, X., Shen, X., & Li, C. (2019). Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Research International, 123, 217–225. https://doi.org/10.1016/j.foodres.2019.04.069
Zhao, Y., Zhang, W., Yang, H., Xu, Z., Wang, X., Zhang, Z., & Deng, J. (2025). Effects of drying methods on phytochemicals and antioxidant activity of broccoli by-products. Food Research International, 208, 116284. https://doi.org/10.1016/j.foodres.2025.116284
Zor, M., Sengul, M., Karakütük, İ. A., & Odunkıran, A. (2022). Changes caused by different cooking methods in some physicochemical properties, antioxidant activity, and mineral composition of various vegetables. Journal of Food Processing and Preservation, 46(11), e16960. https://doi.org/10.1111/jfpp.16960

