Enhancing the stability of anthocyanins: Effects of encapsulation and drying in black grape juice powder
Main Article Content
Keywords
gum Arabic; maltodextrin; microencapsulation; natural colorants; spray-dried powder
Abstract
Plant-based beverages are one of the fastest-growing sectors in the food and beverage industry. However, the short
shelf-life and lower stability of its liquid form required conversion into a stable instant juice powder, with enhanced
shelf life. Microencapsulation via spray-drying protects sensitive bioactive compounds, such as anthocyanins, from
degradation. This study evaluated the impact of different encapsulating agents (EAs) and inlet temperatures on the
stability of anthocyanins and the physicochemical properties of spray-dried black grape juice powder. Maltodextrin
(MD) and gum Arabic (GA) were used as EAs. Black grape juice was spray-dried at an inlet temperature of 160°C using
different concentrations of MD (25, 30, 35, 40, 45, and 50%, w/v). The MD concentrations of 40% and 50% yielded the
highest powder recovery (50.06–50.38%). The concentration of EA (40%, w/v) and inlet temperature (160°C) were
selected to compare the efficacy of MD and the combination of MD and GA (MD+GA) at a ratio of 8:1. A higher total
monomeric anthocyanin content (TMAC) (8.69 mg/100 g dry matter [DM]) and lower moisture content (~1.681%)
were observed in MD+GA. Spray-drying at an inlet temperature of 180°C significantly (p < 0.05) enhanced TMAC
and antioxidant activity and produced the smoothest particle surfaces, compared to 150°C, 160°C, and 170°C. These
findings offer valuable insights for the food industry into optimizing encapsulation strategies and processing conditions to enhance stability and physicochemical properties of anthocyanins in black grape juice powder.
References
Adetoro, A.O., Opara, U.L. and Fawole, O.A. 2020. Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder. Foods. 9(10):1388. https://doi.org/10.3390/foods9101388
Almeida, R.F., Gomes, M.H.G. and Kurozawa, L.E. 2024. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice. Food Res. Int. 180:114090.
Azman, E.M., Charalampopoulos, D. and Chatzifragkou, A. 2020. Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. J Food Sci. 85(11):3745–3755. https://doi.org/10.1111/1750-3841.15466
Bashir, O., Hussain, S.Z., Amin, T., Jan, N., Gani, G., Bhat, S.A. and Jabeen, A. 2022. The optimization of spray-drying process for the development of apricot powder using response surface methodology. Br Food J. 124(11):3724–3747. https://doi.org/10.1108/bfj-07-2021-0727
Boel, E., Koekoekx, R., Dedroog, S., Babkin, I., Vetrano, M.R., Clasen, C. and Van Den Mooter, G. 2020. Unraveling particle formation: from single droplet drying to spray drying and electrospraying. Pharmaceutics. 12(7):625. https://doi.org/10.3390/pharmaceutics12070625
Caliskan, G. and Dirim, S.N. 2016. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol. 287:308–314. https://doi.org/10.1016/j.powtec.2015.10.019
Catalkaya, G., Guldiken, B. and Capanoglu, E. 2022. Encapsulation of anthocyanin-rich extract from black chokeberry (Aronia melanocarpa) pomace by spray drying using different coating materials. Food Funt. 13(22):11579–11591. https://doi.org/10.1039/d2fo02569h
Chang, L.S., Tan, Y.L. and Pui, L.P. 2020. Production of spray-dried enzyme-liquefied papaya (Carica papaya L.) powder. Braz J Food Technol. 23(23):e2019181. https://doi.org/10.1590/1981-6723.18119
Decker, B.L.A., Miguel, E.D.C., Fonteles, T.V., Fernandes, F.A.N. and Rodrigues, S. 2024. Impact of spray drying on the properties of grape pomace extract powder. Processes. 12(7):1390. https://doi.org/10.3390/pr12071390
ElGamal, R., Song, C., Rayan, A.M., Liu, C., Al-Rejaie, S. and ElMasry, G. 2023. Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: a comprehensive overview. Agronomy. 13(6):1580. https://doi.org/10.3390/agronomy13061580
Estrella-Osuna, D.E., Tapia-Hernández, J.A., Ruíz-Cruz, S., Márquez-Ríos, E., Ornelas-Paz, E.D.J., Del-Toro-Sánchez, C.L., Ocaño-Higuera, V.M., Rodríguez-Félix, F., Estrada-Alvarado, M.I. and Cira-Chávez, L.A. 2022. Nanoencapsulation of eggplant (Solanum melongena l.) peel extract in electrospun gelatin nanofiber: preparation, characterization, and in vitro release. Nanomaterials. 12(13):2303. https://doi.org/10.3390/nano12132303
Ezzat, M.A., Abetra, K., Noranizan, M.A. and Yusof, N.L. 2020. Production and properties of spray dried Clinacanthus nutans using modified corn starch as drying agent. Food Res. 4(5):1700–1709. https://doi.org/10.26656/fr.2017.4(5).201
Fang, Z. and Bhandari, B. 2012. Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation, Ch. 4. In: Garti, N. and McClements, D.J. (Eds.) Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals. Woodhead Publishing, Sawston, Cambridge, UK, 73–109. https://doi.org/10.1533/9780857095909.2.73
Figueroa-Enríquez, C.E., Rodríguez-Félix, F., Ruiz-Cruz, S., Castro-Enriquez, D.D., Gonzalez-Rios, H., Perez-Alvarez, J.A., Tapia-Hernández, J.A., Madera-Santana, T.J., Montaño-Grijalva, E.A. and López-Peña, I.Y. 2024. Application of active packaging films for extending the shelf life of red meats: a review. Processes. 12(10). https://doi.org/10.3390/pr12102115
Hay, T.O., Nastasi, J.R., Prakash, S. and Fitzgerald, M.A. 2024. Comparison of Gidyea gum, gum Arabic, and maltodextrin in the microencapsulation and colour stabilisation of anthocyanin-rich powders using freeze-drying and spray-drying techniques. Food Hydrocoll. 163:111023. https://doi.org/10.1016/j.foodhyd.2024.111023
Ijod, G., Nawawi, N.I.M., Anwar, F., Abd Rahim, M.H., Ismail-Fitry, M.R., Adzahan, N.M. and Azman, E.M. 2024. Recent microencapsulation trends for enhancing the stability and functionality of anthocyanins: a review. Food Sci Biotechnol. 33(12):2673–2698. https://doi.org/10.1007/s10068-024-01603-2
Ijod, G., Nawawi, N.I.M., Qoms, M.S., Ismail-Fitry, M.R., Abd Rahim, M.H., Charalampopoulos, D., Sulaiman, R., Adzahan, N.M. and Azman, E.M. 2025. Synergistic effects of intermolecular copigmentation and high-pressure processing on stabilizing mangosteen pericarp anthocyanins. Food Chem. 480:143888. https://doi.org/10.1016/j.foodchem.2025.143888
Jafari, S.M., Ghalenoei, M.G. and Dehnad, D. 2017. Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol. 311:59–65. https://doi.org/10.1016/j.powtec.2017.01.070
Kalušević, A., Lević, S., Čalija, B., Pantić, M., Belović, M., Pavlović, V., Bugarski, B., Milić, J., Žilić, S. and Nedović, V.. 2017. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. J Microencapsul. 34(5):475–487. https://doi.org/10.1080/02652048.2017.1354939
Karadag, A., Ozkan, K. and Sagdic, O. 2024. Development of microencapsulated grape juice powders using black “Isabel” grape peel pectin and application in jelly formulation with enhanced in vitro bioaccessibility of anthocyanins. J Food Sci. 89(4):2067–2083.
Laureanti, E.J.G., Paiva, T.S., De Matos Jorge, L.M. and Jorge, R.M.M. 2023. Microencapsulation of bioactive compound extracts using maltodextrin and gum Arabic by spray and freeze-drying techniques. Int J Biol Macromol. 253:126969. https://doi.org/10.1016/j.ijbiomac.2023.126969
Lee, J., Durst, R.W., Wrolstad, R.E., Eisele, T., Giusti, M.M., Hach, J., Hofsommer, H., Koswig, S., Krueger, D.A., Kupina, S., Martin, S.K., Martinsen, B.K., Miller, T.C., Paquette, F., Ryabkova, A., Skrede, G., Trenn, U. and Wightman, J.D. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int. 88(5):1269–1278. https://doi.org/10.1093/jaoac/88.5.1269
Margean, A., Lupu, M.I., Alexa, E., Padureanu, V., Canja, C.M., Cocan, I., Negrea, M., Calefariu, G. and Poiana, M. 2020. An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice. Molecules. 25(7):1669. https://doi.org/10.3390/molecules25071669
Mat Ramlan, N.A.F.M., Zin, A.S.M., Safari, N.F., Chan, K.W. and Zawawi, N. 2021. Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey. Antibiotics. 10(11):1365. https://doi.org/10.3390/antibiotics10111365
Mishra, P., Mishra, S. and Mahanta, C.L. 2014. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod Process. 92(3):252–258. https://doi.org/10.1016/j.fbp.2013.08.003
Mohsin, A.Z., Nor, N.A.M., Muhialdin, B.J., Mohd Roby, B.H., Abadl, M.M., Marzlan, A.A., Hussain, N. and Meor Hussin, A.S. 2022. The effects of encapsulation process involving Arabic gum on the metabolites, antioxidant and antibacterial activity of kombucha (fermented sugared tea). Food Hydrocoll Health. 2:100072. https://doi.org/10.1016/j.fhfh.2022.100072
Nadali, N., Pahlevanlo, A., Sarabi-Jamab, M. and Balandari, A. 2021. Effect of maltodextrin with different dextrose equivalents on the physicochemical properties of spray-dried barberry juice (Berberis vulgaris L.). J Food Sci Technol. 59(7):2855–2866. https://doi.org/10.1007/s13197-021-05308-w
Nascimento, A.P.S., Carvalho, A.J.D.B.A., Lima, M.D.S., Barros, S.L., Ribeiro, S., Pasqualli, M., Lisboa, H.M. and Barros, A.N. 2023. Enhancing antioxidant retention through varied wall material combinations in grape spray drying and storage. Antioxidants. 12(9):1745. https://doi.org/10.3390/antiox12091745
Nawawi, N.I.M., Ijod, G., Abas, F., Ramli, N., Adzahan, N.M. and Azman, E.M. 2023. Influence of different drying methods on anthocyanins composition and antioxidant activities of mangosteen (Garcinia mangostana L.) pericarps and LC-MS analysis of the active extract. Foods. 12(12):2351. https://doi.org/10.3390/foods12122351
Nayaka, V.S.K., Azeez, S., Suresha, G.J., Tiwari, R.B., Prasanth, S.J., Karunakaran, G. and Suresha, K.B. 2020. Influence of intel drying temperature on the physical attributes of spray dried avocado (Persea americana mill) powder. Int J Curr Microbiol Appl Sci. 9(12):1761–1770. https://doi.org/10.20546/ijcmas.2020.912.208
Nguyen, Q., Dang, T., Nguyen, T., Nguyen, T. and Nguyen, N. 2021. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: effects of drying conditions on some physicochemical properties and antioxidant activities of spray-dried powder. Food Sci Nutr. 10(1):191–203. https://doi.org/10.1002/fsn3.2659
Nguyen, Q.-D., Dang, T.-T., Nguyen, T.-V.-L., Nguyen, T.-T.-D. and Nguyen, N.-N.. 2022. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: effects of different carriers on selected physicochemical properties and antioxidant activities of spray-dried and freeze-dried powder. Int J Food Prop. 25(1):359–374. https://doi.org/10.1080/10942912.2022.2044846
Nthimole, C.T., Kaseke, T. and Fawole, O.A. 2022. Micro-encapsulation and characterization of anthocyanin-rich raspberry juice powder for potential applications in the food industry. Processes. 10(5):1038. https://doi.org/10.3390/pr10051038
Paiva, Y.F., De Figueirêdo, R.M.F., De Melo Queiroz, A.J., Dos Santos, F.S., Amadeu, L.T.S., de Lima, A.G.B., de Lima, T.L.B., da Silva, W.P., Moura, H.V., de Vilela Silva, E.T., Costa, C.C., Galdino, P.O., Gomes, J.P. and Leão, D.A.S. 2023. Maltodextrin as a drying adjuvant in the lyophilization of tropical red fruit blend. Molecules. 28(18):6596. https://doi.org/10.3390/molecules28186596
Parvez, S., Wani, I.A. and Masoodi, F. 2022. Nanoencapsulation of green tea extract using maltodextrin and its characterisation. Food Chem. 384:132579. https://doi.org/10.1016/j.foodchem.2022.132579
Pitt, K., Peña, R., Tew, J.D., Pal, K., Smith, R.A., Nagy, Z.K. and Litster, J.D. 2018. Particle design via spherical agglomeration: a critical review of controlling parameters, rate processes and modelling. Powder Technol. 326:327–343. https://doi.org/10.1016/j.powtec.2017.11.052
Pui, L.P., Kong, I., Karim, R., Yusof, Y.A., Wong, C.W. and Ghazali, H.M. 2021. Optimization of juice production from “cempedak” (Artocarpus integer) fruit pulp liquefied with the aid of enzymes. Br Food J. 124(10):3083–3093. https://doi.org/10.1108/bfj-06-2021-0715
Qadri, T., Naik, H.R., Hussain, S.Z., Naseer, B., Bhat, T., Vijaykumar, N. and Wani, F.J. 2022. Spray dried apple powder: qualitative, rheological, structural characterization and its sorption isotherm. Food Sci Technol (LWT). 165:113694. https://doi.org/10.1016/j.lwt.2022.113694
Saha, D., Nanda, S.K. and Yadav, D.N. 2019. Optimization of spray drying process parameters for production of groundnut milk powder. Powder Technol. 355:417–424. https://doi.org/10.1016/j.powtec.2019.07.066
Santhalakshmy, S., Bosco, S.J.D., Francis, S. and Sabeena, M. 2015. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 274:37–43. https://doi.org/10.1016/j.powtec.2015.01.016
Santos, S.S. dos, Paraíso, C.M. and Madrona, G.S. 2020. Blackberry pomace microspheres: an approach on anthocyanin degradation. Ciência E Agrotecnologia. 44:014420. https://doi.org/10.1590/1413-7054202044014420
Sarabandi, K., Jafari, S.M., Mahoonak, A.S. and Mohammadi, A. 2019. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol. 140:59–68. https://doi.org/10.1016/j.ijbiomac.2019.08.133
Sharif, N., Khoshnoudi-Nia, S. and Jafari, S.M. 2020. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int. 132:109077. https://doi.org/10.1016/j.foodres.2020.109077
Siccama, J.W., Pegiou, E., Zhang, L., Mumm, R., Hall, R.D., Boom, R.M. and Schutyser, M.A. 2021. Maltodextrin improves physical properties and volatile compound retention of spray-dried asparagus concentrate. Food Sci Technol (LWT). 142:111058. https://doi.org/10.1016/j.lwt.2021.111058
Sidlagatta, V., Chilukuri, S.V.V., Devana, B.R., Dasi, S.D. and Rangaswamy, L. 2020. Effect of maltodextrin concentration and inlet air temperature on properties of spray-dried powder from reverse osmosis concentrated sweet orange juice. Braz Arch Biol Technol. 63. https://doi.org/10.1590/1678-4324-2020190538
Silva, L.F.R., Da Silva Gomes, A., Castro, D.R.G., Do Amaral Souza, F.D.C., Mar, J.M., da Silva, L.S., Sanches, E.A., Bezerra, J.D.A., Bakry, A.M. and Campelo, P.H. 2019. Ultrasound-assisted homogenization and gum Arabic combined to physicochemical quality of cupuaçu juice. J Food Process Presev. 43(9):e14072. https://doi.org/10.1111/jfpp.14072
Srivastava, S., Bansal, M., Jain, D. and Srivastava, Y. 2022. Encapsulation for efficient spray drying of fruit juices with bioactive retention. J Food Meas Charact. 16:3792–3814. https://doi.org/10.1007/s11694-022-01481-4
Tsatsop, R.K.T., Chendjou, S.M.S., Djiobie, G.E.T., Nkenmogne, S.B., Nguimbou, R.M., Nguemtchouin, M.M. and Ngassoum, M.B. 2025. Microencapsulation using spray drying of anthoxyanins from Lannea microcarpa (African grape) fruits juice with pyrodextrin from sweet potato starch. Discov Chem. 2(1):5. https://doi.org/10.1007/s44371-025-00078-2
US Department of Agriculture, Foreign Agricultural Service, 2025. Table grapes production data (2023/2024). https://www.fas.usda.gov/data/production/commodity/0575100 (Accessed on: 3 March 2025)
Valenzuela, C. and Aguilera, J.M. 2015. Effects of maltodextrin on hygroscopicity and crispness of apple leathers. J. Food Eng. 144:1–9. https://doi.org/10.1016/j.jfoodeng.2014.07.010
Vasile, F.E., Archaina, D.A., Jiménez-Guzmán, J., Gutiérrez-López, G.F., Alamilla-Beltrán, L. and Mazzobre, M.F. 2023. Prosopis alba exudate gum as new carrier agent for obtaining powdered Hibiscus sabdariffa aqueous extracts by spray drying. Powder Technol. 419:118316. https://doi.org/10.1016/j.powtec.2023.118316
Vergel-Alfonso, A.A., Arias-Avelenda, R., Casariego-Año, A., Giménez, J.M., Ruíz-Cruz, S., López-Corona, B.E., Del-Toro-Sánchez, C.L., Gonzalez-Bravo, A.L., Plascencia-Jatomea, M., Menchaca-Armenta, M., Canizales-Rodríguez, D.F., Ramos-Enríquez, J.R., Tapia-Hernández, J.A. and Rodríguez-Félix, F. 2025. Development and characterization of pectin and beeswax-based coatings enhanced with anthocyanins and its antioxidant and antifungal properties. Processes. 13(2):542–542. https://doi.org/10.3390/pr13020542
Vickovic, D., Pedersen, S.J., Ahrné, L. and Hougaard, A.B. 2023. Effects of lactic acid concentration and spray drying conditions on stickiness of acidified skim milk powder. Int J Dairy Technol. 76(2):266–275. https://doi.org/10.1111/1471-0307.12932
Vidović, S., Ramić, M., Ambrus, R., Vladić, J., Szabó-Révész, P. and Gavarić, A. 2019. Aronia berry processing by spray drying. Food Technol Biotechnol. 57(4):513–524. https://doi.org/10.17113/ftb.57.04.19.6369

