Effects of tea and coffee on tooth discoloration
Main Article Content
Keywords
catechins, chlorogenic acids, coffee, tea, theaflavins, tooth discoloration
Abstract
Tooth discoloration because of dietary habits is a serious concern, particularly from tea and coffee consumption. This study investigated the effects of these beverages on tooth discoloration, focusing on their key chemical components. Bovine enamel specimens were immersed in green and black tea samples and Arabica and Robusta coffee samples for 1–72 h. High-performance liquid chromatography analyzed catechins, theaflavins, and chlorogenic acids, while spectrophotometry measured discoloration. Multiple regression analysis (significance at p < 0.05) revealed that all beverages caused significant tooth discoloration, with black tea showing the most pronounced effect because of its theaflavin content.
References
Ai Y., Wu Q., Yuan H., He Y., Jiang Y., and Niu S. 2024. Development of a rapid, accurate and efficient HPLC method for simultaneous determination of catechins and theaflavins in black tea. J Food Compos Anal. 128:105990. 10.1016/j.jfca.2024.105990
Akay C., Tanış M., and Gulverdiyeva M. 2018. Coloration of provisional restoration materials: a comparison of the effects of mouth rinses and green tea. Eur Oral Res. 52(1):20–26. 10.26650/eor.2018.35588.
Albarran-Martínez L., Rodríguez-Vilchis L.E., Contreras-Bulnes R., Moyaho-Bernal M.d.l.A., and Teutle-Coyotecatl B. 2023. Effect of different industrialized acid beverages on the surface roughness of flowable composite resins: in vitro study. J Clin Ped Dent. 47(5):152–161. 10.22514/jocpd.2023.065
Al-Dlaigan Y.H., Al-Meedania L.A., and Anil S. 2017. The influence of frequently consumed beverages and snacks on dental erosion among preschool children in Saudi Arabia. Nutr J. 16(1):80. 10.1186/s12937-017-0307-9
Al Khalifah A.A., and Radwan W.W. 2024. Tea and coffee discoloration in the simulated remineralization process of tooth structure: investigating the influence of in-office bleaching material on arrested stains. J Biomater Tissue Eng. 14(2):86–91. 10.1166/jbt.2024.3359
Butera A., Pascadopoli M., Gallo S., Pardo A., Stablum G., Lelli M., et al. 2023. Evaluation of the efficacy of low-particle-size toothpastes against extrinsic pigmentations: a randomized controlled clinical trial. Dent J. 11(3):82. 10.3390/dj11030082.
Chaturvedula V.S.P., and Prakash I. 2011. The aroma, taste, color and bioactive constituents of tea. J Med Plants Res. 5(11):2110–2124.
Côrtes G., Pini N.P., Lima D.A.N.L., Liporoni P.C.S., Munin E., Ambrosano G.M.B., et al. 2013. Influence of coffee and red wine on tooth color during and after bleaching. Acta Odontol Scand. 71(6):1475–1480. 10.3109/00016357.2013.771404
Dai Q., He Y., Ho C.-T., Wang J., Wang S., Yang Y., et al. 2017. Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment. J Food Sci Technol. 54(9):2919–2928. 10.1007/s13197-017-2730-5
Filippini T., Malavolti M., Borrelli F., Izzo A.A., Fairweather-Tait S.J., Horneber M., and Vinceti M. 2020. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev. 3. 10.1002/14651858.CD005004.pub3
Finsterer J. 2002. Earl Grey tea intoxication. Lancet. 359(9316):1484. 10.1016/S0140-6736(02)08436-2
Hardini N., Alikhlash R., Retnoningrum D., and Limijadi E.K.S. 2022. Whitening effect of manalagi apple (Malus sylvestris) extract on tea-induced tooth discoloration. Bali Med J. 11(2):950–952. 10.15562/bmj.v11i2.3511
Karadas M., Tahan E., Demirbuga S., and Seven N. 2014. Influence of tea and cola on tooth color after two in-office bleaching applications. J Res Dent. 2(2):83–87. 10.4103/2321-4619.136643
Kim S., Chung S.H., Kim R.J.Y., Park Y.-S. 2024b. Investigating the role of chlorogenic acids and coffee type in coffee-induced teeth discoloration. Acta Odontol Scand. 82(1):1–8. 10.1080/00016357.2023.2245880
Kim J.H., Kim S., Jin B.H., Garcia-Godoy F., and Park Y.S. 2023. Longterm abrasive and erosive effect of whitening toothpaste on dentin surface. Am J Dent. 36(6):267–273.
Kim S., Lee C.-H., Ma S., and Park Y.-S. In press. Whitening efficacy of toothpastes on coffee-stained teeth: an enamel surface analysis. Int Dent J. 10.1016/j.identj.2024.02.006
Kim J.-H., Miletic V., Leprince J., and Park Y.-S. In press. Evaluation of relative dentin abrasivity in whitening toothpastes containing acids. Int Dent J. 10.1016/j.identj.2024.04.004
Kim S., Song J.S., Yoon J., Garcia-Godoy F., and Park Y.S. 2024. Influence of coffee characteristics on tooth discoloration. Am J Dent. 37(4):171–176.
Larnani S., Song Y., Kim S., and Park Y.-S. In press. Examining enamel-surface demineralization upon exposure to acidic solutions and the remineralization potential of milk and artificial saliva. Odontology. 10.1007/s10266-024-00960-y
Leung L.K., Su Y., Zhang Z., Chen Z.-Y., Huang Y., and Chen R. 2001. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 131(9):2248–2251. 10.1093/jn/131.9.2248
Li S., Lo C.Y., Pan M.H., Lai C.S., and Ho C.T. 2013. Black tea: chemical analysis and stability. Food Funct. 4(1):10–18. 10.1039/c2fo30093a
Manno S.H.C., Manno F.A.M., Tian L., Khan M.S., Ahmed I., Liu Y., et al. 2020. Spectroscopic and microscopic examination of teeth exposed to green tea at different temperatures. PLoS One. 15(12):e0244542. 10.1371/journal.pone.0244542
Mehrabi Z., and Lashermes P. 2017. Protecting the origins of coffee to safeguard its future. Nat Plants. 3(1):16209. 10.1038/nplants.2016.209
Meyer B.R., White H.M., McCormack J.D., and Niemeyer E.D. 2023. Catechin composition, phenolic content, and antioxidant properties of commercially available bagged, gunpowder, and matcha green teas. Plant Foods Hum Nutr. 78(4):662–669. 10.1007/s11130-023-01121-2
Namita P., Mukesh R., and Vijay K. 2012. Camellia Sinensis (green tea): a review. Glob J Pharmacol. 6(2):52–59.
Nunes F.M., Cruz A.C.S., and Coimbra M.A. 2012. Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. J Agric Food Chem. 60(35):8710–8719. 10.1021/jf301527e
Panahandeh N., Mohammadkhani S., Sedighi S., Nejadkarimi S., and Ghasemi A. 2023. Comparative effects of three bleaching techniques on tooth discoloration caused by tea. Front Dent. 20(1): 25–30. 10.18502/fid.v20i25.13343.
Pratomo A.H., Triaminingsih S., and Indrani D.J. 2018. Effect on tooth discoloration from the coffee drink at various smoke disposal during coffee bean roasting. J Phys Conf Ser. 1073(3):32031. 10.1088/1742-6596/1073/3/032031
Qin W., Yamada R., Araki T., and Ogawa Y. 2022. Changes in morphological and functional characteristics of tea leaves during Japanese green tea (Sencha) manufacturing process. Food Bioproc Technol. 15(1):82–91. 10.1007/s11947-021-02735-7
Sestrimska M., Titova T., Nachev V., and Damyanov C. 2016. Self-organizing artificial neural network a kohonen to be multifactorial classification of “English breakfast“ tea, with different geographical origin of components. Paper No. 1, presented in Scientific Works of University of Food Technologies, Vol. 63, Issue 2, Plovdiv, Bulgaria, December 2016.
Suzuki T., Miyoshi N., Hayakawa S., Imai S., Isemura M., and Nakamura Y. 2016. Beverage impacts on health and nutrition, 2nd ed. Springer, Cham, Switzerland.
Tanaka T., and Kouno I. 2003. Oxidation of tea catechins: chemical structures and reaction mechanism. Food Sci Technol Res. 9(2):128–133. 10.3136/fstr.9.128
Wu D., Mei S., Duan R., Geng F., Wu W., Li X., et al. 2020. How black tea pigment theaflavin dyes chicken eggs: Binding affinity study of theaflavin with ovalbumin. Food Chem. 303:125407. 10.1016/j.foodchem.2019.125407
Yao Y., Grogan J., Zehnder M., Lendenmann U., Nam B., Wu Z., et al. 2001. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch Oral Biol. 46(4):293–303. 10.1016/S0003-9969(00)00134-5