Sodium alginate edible films incorporating cactus pear extract: antimicrobial, chemical, and mechanical properties

Main Article Content

Saeed A. Asiri
Amal Matar
Ahmed Mahmoud Ismail
Hoda A. S. Farag

Keywords

antimicrobial, antioxidant, cactus, film, mechanical characteristics, sodium alginate

Abstract

The potential benefits of biodegradable and functional food packaging materials have garnered increasing attention in recent years. Sodium alginate (SA), a commonly utilized polysaccharide, is particularly noteworthy for producing biodegradable films for food packaging. This study aimed to investigate SA-based edible films enriched with various proportions of cactus pear peel extract (CPPE). We assessed the films and extracts for total phenolic content, antimicrobial and antioxidant activities, as well as mechanical properties. Cactus pear peels powder (CPPP) exhibited higher contents of total polyphenols (1243.82 mg GAE/100 g), total flavonoids (18.92 mg QE/100 g), and betalains (2.28 mg/100 g). The main constituents detected were catechol, pyrogallol, catechin, and alpha-coumaric acid, with concentrations of 1013.82, 223.45, 148.21, and 101.02 ppm, respectively, contributing about 45.71%, 9.85%, 6.54%, and 4.46% of the total phenolic compounds. The thickness of the SA films increased from 0.220 mm to 0.265 mm. The tensile strength values ranged from 1.98 to 3.12, while the elongation at break values for SA-CPPE films decreased relative to the plain SA film. Moreover, the inclusion of CPPE improved the barrier characteristics (with water vapor permeability values for SA films with 1%, 2%, and 3% CPPE ranging from 0.72 × 10−5 g•h−1•m−1•Pa−1 to 1.68 × 10−5 g•h−1•m−1•Pa−1) and induced variations in flexibility and resistance. The plain SA film did not exhibit any inhibitory activity against bacteria and fungi. However, the inclusion of CPPE in alginate films showed favorable antibacterial properties, which improved progressively with increasing CPPE concentration. These findings highlight the potential of incorporating active alginate-based films in food preservation.

Abstract 285 | PDF Downloads 198 HTML Downloads 0 XML Downloads 107

References

Abdin, M., El-Beltagy, A. E., El-Sayed, M. E., & Naeem, M. A. (2021). Production and characterization of sodium alginate/gum Arabic based films enriched with Syzygium cumini seeds extracts for food application. Journal of Polymers and the Environment, 30(4), 1615–1626. 10.1007/s10924-021-02306-z

Abou-Zaid, F., Ahmed, F., & Zedan, A. E.-H. (2022). Using prickly pear (Opuntia spp.) fruit juice and peels in cookies production. Alexandria Science Exchange Journal, 43, 239–248. 10.21608/asejaiqjsae.2022.239236

Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. 10.1016/j.fpsl.2018.01.006

Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. 10.1016/j.jare.2013.07.006

Al-Weshahy, A., & Rao, V. A. (2012). Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health-A review. In Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health (pp. 1-15). 10.5772/30459

Aloui, H., Deshmukh, A. R., Khomlaem, C., & Kim, B. S. (2021). Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocolloids, 113, 106508. 10.1016/j.foodhyd.2020.106508

Amaya-Cruz, D. M., Pérez-Ramírez, I. F., Delgado-García, J., Mondragón-Jacobo, C., Dector-Espinoza, A., & Reynoso-Camacho, R. (2019). An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus-indica L.) peel with different tonalities. Food Chemistry, 278, 568–578. 10.1016/j.foodchem.2018.11.031

Anwar, M. M., & Sallam, E. M. (2016). Utilization of prickly pear peels to improve the quality of pan bread. Arab Journal of Nuclear Science and Applications, 94, 151–163.

AOAC. (2002). Official methods of analysis of the Association of Analytical Chemists (17th ed.). AOAC International.

AOAC. (2010). Official methods of analysis (18th ed.). Association of Official Analytical Chemists.

Asgher, M., Qamar, S. A., Bilal, M., & Iqbal, H. M. N. (2020). Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International, 137, 109625. 10.1016/j.foodres.2020.109625

Askar, A., & Treptow, H. (1993). Quality assurance in tropical fruit processing. 10.1007/978-3-642-77687-8

Atef, N. M., Shanab, S. M., Negm, S. I., & Abbas, Y. A. (2019). Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. Bulletin of the National Research Centre, 43. 10.1186/s42269-019-0184-9

Ballesteros, M. N., Cabrera, R. M., Saucedo, M. S., Yepiz-Plascencia, G. M., Ortega, M. I., & Valencia, M. E. (2001). Dietary fiber and lifestyle influence serum lipids in free-living adult men. Journal of the American College of Nutrition, 20(6), 649–655. 10.1080/07315724.2001.10719163

Barbosa, C. H., Andrade, M. A., Vilarinho, F., Fernando, A. L., & Silva, A. S. (2021). Active edible packaging. Encyclopedia, 1, 360–370. 10.3390/encyclopedia1020030

Bekin, S., Sarmad, S., Gürkan, K., Yenici, G., Keçeli, G., & Gürdağ, G. (2014). Dielectric, thermal, and swelling properties of calcium ion-crosslinked sodium alginate film. Polymer Engineering & Science, 54(6), 1372–1382. 10.1002/pen.23678

Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232–239. 10.1016/j.jfoodeng.2011.05.023

Bensadón, S., Hervert-Hernández, D., Sáyago-Ayerdi, S. G., & Goñi, I. (2010). By-products of Opuntia ficus-indica as a source of antioxidant dietary fiber. Plant Foods for Human Nutrition, 65(3), 210–216. 10.1007/s11130-010-0176-2

Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. International Journal of Microbiology, 2013, 746165. 10.1155/2013/746165

Bousbia, N., Mazari, A., Lamoudi, L., Akretche-Kelfat, S., Chibane, N., & Dif, M. E. (2022). Evaluation of the phytochemical composition and the antioxidant activity of cactus pear flowers and fruit derivatives. Agrobiologia, 12, 3235–3243 .

Capar, T. D. (2023). Characterization of sodium alginate-based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packaging and Shelf Life, 37, 101068. 10.1016/j.fpsl.2023.101068

Cassano, A., Conidi, C., & Drioli, E. (2010). Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination, 250(3), 1101–1104. 10.1016/j.desal.2009.09.117

Castellar, R., Obón, J. M., Alacid, M., & Fernández-López, J. A. (2003). Color properties and stability of betacyanins from Opuntia fruits. Journal of Agricultural and Food Chemistry, 51(10), 2772–2776. 10.1021/jf021045h

Castillo, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa ‘Saba’ (Musa acuminata × Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1), 202–207.

Chang, S. F., Hsieh, C. L., & Yen, G. C. (2008). The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chemistry, 106(2), 569–575. 10.1016/j.foodchem.2007.06.017

Chavez-Santoscoy, R. A., Gutierrez-Uribe, J. A., & Serna-Saldívar, S. O. (2009). Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods for Human Nutrition, 64(2), 146–152. 10.1007/s11130-009-0117-0

Chen, F., & Chi, C. (2021). Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging. International Journal of Biological Macromolecules, 186, 405–413. 10.1016/j.ijbiomac.2021.07.025

Chen, J., Wu, A., Yang, M., Ge, Y., Pristijono, P., Li, J., Xu, B., & Mi, H. (2021). Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control, 126, 108063. 10.1016/j.foodcont.2021.108063

Coria Cayupán, Y. S., Ochoa, M. J., & Nazareno, M. A. (2011). Health-promoting substances and antioxidant properties of Opuntia sp. fruits: Changes in bioactive-compound contents during ripening process. Food Chemistry, 126, 514–519. 10.1016/j.foodchem.2010.11.033

Dehbi, F., Hasib, A., Ouatmane, A., Elbatal, H., & Jaouad, A. (2014). Physicochemical characteristics of Moroccan prickly pear juice (Opuntia ficus-indica L.). International Journal of Emerging Technologies and Advanced Engineering, 4, 300–306.

Díaz-Montes, E., Yáñez-Fernández, J., & Castro-Muñoz, R. (2021). Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). Journal of Food Process Preservation, 45. 10.1111/jfpp.15489

Dilucia, F., Lacivita, V., Nobile, M. A. Del, & Conte, A. (2021). Improving the storability of cod fish-burgers according to the zero-waste approach. Foods, 10, 1972. 10.3390/foods10091972

Dinh, T. A., Le, Y. N., Pham, N. Q., Ton-That, P., Van-Xuan, T., Ho, T. G.-T., Nguyen, T., & Phuong, H. H. K. (2023). Fabrication of antimicrobial edible films from chitosan incorporated with guava leaf extract. Progress in Organic Coatings, 183, 107772. 10.1016/j.porgcoat.2023.107772

Domene-Ruíz, M. (2017). Papel nutricional y saludable de productos hortícolas intensivos en la dieta. Acta Horticulturae, Ed. Soc. Española Ciencias Hortícolas, 17–24.

Dou, L., Li, B., Zhang, K., Chu, X., & Hou, H. (2018). Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. International Journal of Biological Macromolecules, 118, 1377–1383. 10.1016/j.ijbiomac.2018.06.121

El-Samahy, S. K., Abd El-Hady, E. A., Habiba, R. A., & Moussa, T. E. (2006a). Effect of ripening stage on rheological properties of cactus pear pulp. In Proceedings of the 4th International Symposium on Food Rheology and Structure (pp. 581–572). Switzerland.

El-Samahy, S. K., Abd El-Hady, E. A., Habiba, R. A., & Moussa, T. E. (2006b). Chemical and rheological characteristics of orange-yellow cactus-pear pulp from Egypt. Journal of the Professional Association for Cactus Development, 8, 39–51.

Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, S1010–S1018. 10.1016/j.arabjc.2011.11.011

Fabra, M. J., Falcó, I., Randazzo, W., Sánchez, G., & López-Rubio, A. (2018). Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocolloids, 81, 96–103. 10.1016/j.foodhyd.2018.02.026

Falch, E., Overrein, I., Solberg, C., & Slizyte, R. (2010). Composition and calories. In Handbook of Seafood and Seafood Products Analysis (pp. 257–285). CRC Press. 10.1201/9781420046359-c16

Feng, M., Yu, L., Zhu, P., Zhou, X., Liu, H., Yang, Y., Zhou, J., Gao, C., Bao, X., & Chen, P. (2018). Development and preparation of active starch films carrying tea polyphenol. Carbohydrate Polymers, 196, 162–167. 10.1016/j.carbpol.2018.05.043

Ferreira, A., Candeias, D., Coelho, I. S., Passarinho, J. A., Alves, J. C. R., Andrada, L. C., Ferreira, M. E., Oliveira, M. M. R., Sapata, M. M. L., & Ramos, P. J. T. (2016). A cultura da figueira-da-índia e a valorização agroindustrial do fruto. INIAV, IP.

Feugang, J. M. (2006). Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Frontiers in Bioscience, 11, 2574. 10.2741/1992

Flórez, M., Guerra-Rodríguez, E., Cazón, P., & Vázquez, M. (2022). Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids, 124, 107328. 10.1016/j.foodhyd.2021.107328

Gallaher, D. D., & Schneeman, B. O. (2001). Dietary fiber. In Present Knowledge in Nutrition (p. .). International Life Sciences Institute Press.

Gao, X., Ohlander, M., Jeppsson, N., Björk, L., & Trajkovski, V. (2000). Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. Journal of Agricultural and Food Chemistry, 48, 1485–1490. 10.1021/jf991072g

Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9, 1639. 10.3389/fmicb.2018.01639

González, R., Cervantes, Y., & Caraballo, L. (2016). Conservación de la guayaba (Psidium guajava L.) en postcosecha mediante un recubrimiento comestible binario. Temas Agrarios, 21, 54–64. 10.21897/rta.v21i1.891

Han, J. H. (2014). Edible films and coatings. In Innovations in food packaging (pp. 213–255). 10.1016/B978-0-12-394601-0.00009-6

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172–182. 10.1016/j.foodhyd.2014.09.004

Inglese, P., Mondragon, C., Nefzaoui, A., & Saenz, C. (2017). Crop ecology, cultivation and uses of cactus pear. Food and Agriculture Organization of the United Nations (FAO).

Jaramillo, C. M., González Seligra, P., Goyanes, S., Bernal, C., & Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch/Stärke, 67, 780–789. 10.1002/star.201500033

Kader, A. (2002). Quality parameters of fresh-cut fruit and vegetable products. In Fresh-Cut Fruits and Vegetables (pp. 1–11). 10.1201/9781420031874.ch2

Kim, S., Baek, S.-K., & Song, K. B. (2018). Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packaging and Shelf Life, 18, 157–163. 10.1016/j.fpsl.2018.11.008

Kim, S., Kang, J.-H., & Song, K. B. (2020). Development of a sword bean (Canavalia gladiata) starch film containing goji berry extract. Food Bioprocess Technology, 13, 911–921. 10.1007/s11947-020-02447-4

Koosha, M., & Hamedi, S. (2019). Intelligent chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal, and antibacterial properties. Progress in Organic Coatings, 127, 338–347. 10.1016/j.porgcoat.2018.11.028

Kumar, A., Hasan, M., Mangaraj, S., Pravitha, M., Verma, D. K., & Srivastav, P. P. (2022). Trends in edible packaging films and its prospective future in food: A review. Applied Food Research, 2, 100118. 10.1016/j.afres.2022.100118

Liguori, G., Gaglio, R., Greco, G., Gentile, C., Settanni, L., & Inglese, P. (2021). Effect of Opuntia ficus-indica mucilage edible coating on quality, nutraceutical, and sensorial parameters of minimally processed cactus pear fruits. Agronomy, 11(10), 1963. 10.3390/agronomy11101963

Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 134, 993–1001. 10.1016/j.ijbiomac.2019.05.175

Liu, J., Wang, Y., Lv, J., Wu, Y., Guo, Y., Sun, C., & Li, X. (2023). Biodegradable composite films based on egg white protein and tea polyphenol: Physicochemical, structural, and antibacterial properties. Food Packaging and Shelf Life, 38, 101098. 10.1016/j.fpsl.2023.101098

Luo, Y., Liu, H., Yang, S., Zeng, J., & Wu, Z. (2019). Sodium alginate-based green packaging films functionalized by guava leaf extracts and their bioactivities. Materials, 12(18), 2923. 10.3390/ma12182923

Mahloko, L. M., Silungwe, H., Mashau, M. E., & Kgatla, T. E. (2019). Bioactive compounds, antioxidant activity, and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, 5, e02479. 10.1016/j.heliyon.2019.e02479

Manzoor, A., Yousuf, B., Pandith, J. A., & Ahmad, S. (2023). Plant-derived active substances incorporated as antioxidant, antibacterial, or antifungal components in coatings/films for food packaging applications. Food Bioscience, 53, 102717. 10.1016/j.fbio.2023.102717

Martínez de Tejada, G., Sánchez-Gómez, S., Rázquin-Olazaran, I., Kowalski, I., Kaconis, Y., Heinbockel, L., et al. (2012). Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Current Drug Targets, 13(9), 1121–1130. 10.2174/138945012802002410

Martins, J. T., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., & Vicente, A. A. (2012). Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 29, 280–289. 10.1016/j.foodhyd.2012.03.004

Melgar, B., Dias, M. I., Ciric, A., Sokovic, M., Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Barros, L., & Ferreira, I. (2017). By-product recovery of Opuntia spp. peels: Betalainic and phenolic profiles and bioactive properties. Industrial Crops and Products, 107, 353–359. 10.1016/j.indcrop.2017.06.011

Del Nobile, M. A., Conte, A., Scrocco, C., & Brescia, I. (2009). New strategies for minimally processed cactus pear packaging. Innovative Food Science & Emerging Technologies, 10(3), 356–362. 10.1016/j.ifset.2008.12.006

Norajit, K., Kim, K. M., & Ryu, G. H. (2010). Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering, 98(3), 377–384. 10.1016/j.jfoodeng.2010.01.015

Núñez-Castellano, K., Castellano, G., Ramirez-Méndez, R., Sindoni-María, & Marín, C. (2012). Efecto del cloruro de calcio y una cubierta plástica sobre la conservación de las propiedades organolépticas de la fresa (Fragaria x ananassa Duch). Revista Iberoamericana de Tecnología Postcosecha, 13, 21–30.

Oliveira Filho, J. G. de, Rodrigues, J. M., Valadares, A. C. F., Almeida, A. B. de, Lima, T. M. de, Takeuchi, K. P., et al. (2019). Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocolloids, 92, 267–275. 10.1016/j.foodhyd.2019.01.052

Parafati, L., Restuccia, C., Palmeri, R., Fallico, B., & Arena, E. (2020). Characterization of prickly pear peel flour as a bioactive and functional ingredient in bread preparation. Foods, 9(9), 1189. 10.3390/foods9091189

Parreidt, T. S., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 170. 10.3390/foods7100170

Peter-Kechukwu, A., Okafor, D. C., Kabuo, N. O., Ibeabuchi, J., Odimegwu, E. N., Alagbaoso, S. O., Njideka, N., & Mbah, R. N. (2017). Production and evaluation of cookies from whole wheat and date palm fruit pulp as sugar substitute. International Journal of Advanced Engineering Technology, Management & Applied Sciences.

Piga, A. (2004). Cactus pear: A fruit of nutraceutical and functional importance. Journal of the Professional Association for Cactus Development, 6, 9–22.

Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005). Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38(3), 267–272. 10.1016/j.foodres.2004.04.009

Rahimi, P., Abedimanesh, S., Mesbah-Namin, S. A., & Ostadrahimi, A. (2019). Betalains, the nature-inspired pigments, in health and diseases. Critical Reviews in Food Science and Nutrition, 59(18), 2949–2978. 10.1080/10408398.2018.1479830

Rao, A., & Rao, L. (2007). Carotenoids and human health. Pharmacological Research, 55(3), 207–216. 10.1016/j.phrs.2007.01.012

Roger, S., Talbot, D., & Bee, A. (2006). Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. Journal of Magnetism and Magnetic Materials, 305(2), 221–227. 10.1016/j.jmmm.2006.01.005

Santana, A. A., & Kieckbusch, T. G. (2013). Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Brazilian Journal of Chemical Engineering, 30(4), 835–845. 10.1590/S0104-66322013000400015

Shivangi, S., Dorairaj, D., Negi, P. S., & Shetty, N. P. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids, 121, 107046. 10.1016/j.foodhyd.2021.107046

Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., & González-Martínez, C. (2017). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 1153–1161. 10.1016/j.carbpol.2016.10.080

Villegas, C., & Albarracín, W. (2016). Aplicación y efecto de un recubrimiento comestible sobre la vida útil de la mora de Castilla (Rubus glaucus Benth). Vitae, 23, 202–209. 10.17533/udea.vitae.v23n3a06

Wang, H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan, Y.-Y., Zhang, J., Niu, B., & Li, W. (2019). Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry, 283, 397–403. 10.1016/j.foodchem.2019.01.022

World Health Organization. (2004). Vitamin and mineral requirements in human nutrition. World Health Organization.

Wu, H., Li, T., Peng, L., Wang, J., Lei, Y., Li, S., Li, Q., Yuan, X., Zhou, M., & Zhang, Z. (2023). Development and characterization of antioxidant composite films based on starch and gelatin incorporating resveratrol fabricated by extrusion compression moulding. Food Hydrocolloids, 139, 108509. 10.1016/j.foodhyd.2023.108509

Yan, Q., Zhang, J., Dong, H., Hou, H., & Guo, P. (2013). Properties and antimicrobial activities of starch-sodium alginate composite films incorporated with sodium dehydroacetate or rosemary extract. Journal of Applied Polymer Science, 127, 1951–1958. 10.1002/app.37570

Yong, H., Bi, F., Liu, J., Qin, Y., Bai, R., & Liu, J. (2020). Preparation and characterization of antioxidant packaging by chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and baicalein. International Journal of Biological Macromolecules, 153, 836–845. 10.1016/j.ijbiomac.2020.03.076

Yoo, K. M., Lee, C. H., Lee, H., Moon, B., & Lee, C. Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chemistry, 106, 929–936. 10.1016/j.foodchem.2007.07.006

Zarei, M., Azizi, M., & Bashir-Sadr, Z. (2011). Evaluation of physicochemical characteristics of pomegranate (Punica granatum L.) fruit during ripening. Fruits, 66(2), 121–129. 10.1051/fruits/2011021

Zhang, W., & Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticles via a novel one-pot method. International Journal of Biological Macromolecules, 155, 1252–1261. 10.1016/j.ijbiomac.2019.11.093ISSN 1120-1770 online, DOI 10.15586/ijfs.v36i4.2675