Assessment of engineering parameters and mass modeling for reducing postharvest losses of sweet lime (Citrus limetta) fruit

Main Article Content

Shivani Desai
Vikram Kad
Ganesh Shelke
Nashi K. Alqahtani
Prashant Kumar Patil
Sudama Kakade
Govind Yenge
Sati Y. Al-Dalain
Mahmoud Helal
Nimah Alnemari
Rokayya Sami
Hala M. Abo-dief
Suzan A. Abushal
Awatif M. Almehmadi
Woroud A. Alsanei
Mohamed K. Morsy

Keywords

sweet lime, citrus limetta, engineering properties, mass modeling, postharvest losses

Abstract

Lack of data on the engineering properties of sweet lime fruits leads to substantial waste during postharvest processes. This study analyzed the engineering properties of sweet lime fruit, including physical, chemical, thermal, and mechanical properties, and developed mass models to minimize postharvest losses. The average values of the sweet lime’s major axis (LA), intermediate axis (IA), and transverse axis (TA), as well as the arithmetic, geometric, and equivalent mean diameters, were 78.71, 77.07, 74.96, 76.92, 76.89, and 76.9 mm, respectively. The mean values of PLA, PIA, PTA, CPA, and Sa were 4663.01, 4567.45, 4444.17, 4558.21, and 18694.41 mm2, respectively. Sweet lime volumes were measured by Vellip, Vpro, and Vosp, with average values of 242.95, 254.97, and 249.79 cm3. The sphericity was 0.95, suggesting that the sweet lime has a spherical shape. The average bulk density and true density were 449.75 and 931.41 kg/m3. Stainless steel exhibited the minimum static friction. The average peak values of penetration, compression, and cutting forces were 9.44, 311.08, and 148.68 N, respectively. Sweet lime had average L*, a*, and b* values of 58.07, -13.15, and 51.38. Models such as S-curve, power, and quadratic were used to predict the sweet lime mass. The linear and quadratic models exhibited the highest R2 values for the intermediate axis, geometric mean diameter, and ellipsoidal volume, with 0.93, 0.95, and 0.93, respectively. The quadratic model, based on geometric mean diameter, is recommended for accurately estimating sweet lime mass. The results of this study showed a statistically significant relationship (ρ < 0.01) for all properties and models. By analyzing the acquired data, postharvest operations for sweet lime fruit processing can be designed, improved, and developed, leading to increased efficiency and productivity.

Abstract 272 | PDF Downloads 199 HTML Downloads 0 XML Downloads 32

References

Abhishek, K., Vinita, R., & Ravika, R. (2017). Studies on Physical Changes in Fruit Development of Sweet Orange (Citrus sinensis (L.) Osbeck). International Journal of Pure & Applied Bioscience, 5(1): 601–612. 10.18782/2320-7051.2520

Azman, P. N. M. A., Shamsudin, R., Che Man, H., & Ya acob, M. E. (2020). Some Physical Properties and Mass Modelling of Pepper Berries (Piper nigrum L.), Variety Kuching, at Different Maturity Levels. Processes, 8(10): 1314. 10.3390/pr8101314

Barbhuiya, R. I., Nath, D., Singh, S. K., & Dwivedi, M. (2020). Mass Modeling of Indian Coffee Plum (Flacourtia Jangomas) Fruit with Its Physicochemical Properties. International Journal of Fruit Science, 20(3): 1–24. 10.1080/15538362.2020.1775161

Bhaumik, A., Nousheen, M., Huma, M., & Vennela, M. (2018). A potential review: phytochemical and pharmacological profile of sweet lime (mosambi fruit). Panacea Journal of Pharmacy and Pharmaceutical Sciences, 7(4): 1–13. 10.1007/978-3-031-37534-7_3

Bibwe, B., Mahawar, M. K., Jalgaonkar, K., Meena, V. S., & Kadam, D. M. (2022). Mass modeling of guava (cv. Allahabad safeda) fruit with selected dimensional attributes: Regression analysis approach. Journal of Food Process Engineering, 45(3): 1–11. 10.1111/jfpe.13978

Birania, S., Attkan, A. K., Kumar, S., Kumar, N., & Singh, V. K. (2022). Mass modeling of strawberry (Fragaria × Ananasa) based on selected physical attributes. Journal of Food Process Engineering, 45(5): 1–12. 10.1111/jfpe.14023

Hacıseferogulları, H., Gezer, I., Ozcan, M. M., & MuratAsma, B. (2007). Post-harvest chemical and physical–mechanical properties of some apricot varieties cultivated in Turkey. Journal of Food Engineering, 79(1): 364–373. 10.1016/j.jfoodeng.2006.02.003

Jahanbakhshi, A., Abbaspour-Gilandeh, Y., Ghamari, B., & Heidarbeigi, K. (2019). Assessment of physical, mechanical, and hydrodynamic properties in reducing postharvest losses of cantaloupe (Cucumis melo var. Cantaloupensis). Journal of Food Process Engineering, 42(5): 1–8. 10.1111/jfpe.13091

Khoshnam, F., Tabatabaeefar, A., Varnamkhasti, M. G., & Borghei, A. (2007). Mass modeling of pomegranate (Punica granatum L.) fruit with some physical characteristics. Scientia Horticulturae, 114(1): 21–26. 10.1016/j.scienta.2007.05.008

Kumari, V., Yadav, B. S., B. Yadav, R., & Nema, P. K. (2020). Effect of osmotic agents and ultasonication on osmo-convective drying of sweet lime (Citrus limetta) peel. Journal of Food Process Engineering, 43(4): 2–11. 10.1111/jfpe.13371

Mahawar, M. K., Bibwe, B., Jalgaonkar, K., & Ghodki, B. M. (2019). Mass modeling of kinnow mandarin based on some physical attributes. Journal of Food Process Engineering, 42(5): 1–11. 10.1111/jfpe.13079

Mahawar, M. K., Jalgaonkar, K., & Bhushan, B. (2020). Development of composite mechanical peeler cum juice extractor for kinnow and sweet orange. Journal of Food Science and Technology, 57: 4355–4363. 10.1007/s13197-020-04472-9

Mondal, N. K., Basu, S., Sen, K., & Debnath, P. (2019). Potentiality of mosambi (Citrus limetta) peel dust toward removal of Cr(VI) from aqueous solution: an optimization study. Applied Water Science, 9(4): 1–13. 10.1007/s13201-019-0997-6

Moradi, M., Balanian, H., Taherian, A., & Mousavi Khaneghah, A. (2020). Physical and mechanical properties of three varieties of cucumber: A mathematical modeling. Journal of Food Process Engineering, 43(2): 1–8. 10.1111/jfpe.13323

Motie, J., Miraei, A. S. H., Abbaspour, F. M. H., & Emadi, B. (2014). Modeling physical properties of lemon fruits for separation and classification. International Food Research Journal, 21(5): 1901–1909.

Mukama, M., Ambaw, A., & Opara, U. L. (2020). Thermophysical properties of fruit—a review with reference to postharvest handling. Journal of Food Measurement and Characterization, 14(5): 2917–2937. 10.1007/s11694-020-00536-8

Murakonda, S., Patel, G., & Dwivedi, M. (2022). Characterization of engineering properties and modeling mass and fruit fraction of wood apple (Limonia acidissima) fruit for post-harvest processing. Journal of the Saudi Society of Agricultural Sciences, 21(4): 267–277. 10.1016/j.jssas.2021.09.005

Panda, T. C., Thota, N., Dwivedi, M., Pradhan, R. C., & Seth, D. (2022). Mass modeling of engineering properties and characterization of Kadamb fruit ( Neolamarckia cadamba ): An underutilized fruit. Journal of Food Process Engineering, 45(11): 1–12. 10.1111/jfpe.14160

Pathak, S. S., Pradhan, R. C., & Mishra, S. (2019). Physical characterization and mass modeling of dried Terminalia chebula fruit. Journal of Food Process Engineering, 42(3): 1–10. 10.1111/jfpe.12992

Pathak, S. S., Pradhan, R. C., & Mishra, S. (2020). Mass modeling of Belleric Myrobalan and its physical characterization in relation to post-harvest processing and machine designing. Journal of Food Science and Technology, 57(4): 1290–1300. 10.1007/s13197-019-04162-1

Patil, M., Shinde, S., & Panchal, V. (2017). Comparative growth, quality and yield performance study of sweet orange genotypes under rainfed vertisol of Marathwada. International Journal of Chemical Studies, 5(4): 157–160.

Roumani, M., Remmani, R., Miladi, M., Abu-Khalaf, N., & Canales, A. R. (2024). Physical properties and mass models of Deglet Noor and Arichti semi-dry Algerian date fruits: A comparative study. Food Science and Nutrition, 12(4): 2886–2895. 10.1002/fsn3.3969

Sanganamoni, S., Kancherla, S., Pedapati, A., Akki, S., & Patel, J. (2024). Physical characterization and development of mathematical models for predicting mass and area of oil palm fruits. Journal of Food Process Engineering, 47(1): e14512. 10.1111/jfpe.14512

Shariq, M., & Sohail, M. (2019). Citrus limetta peels: a promising substrate for the production of multienzyme preparation from a yeast consortium. Bioresources and Bioprocessing, 6(1): 2–15. 10.1186/s40643-019-0278-0

Shelke, G., Pandiarajan, T., & Modi, R. (2018). Effect of Moisture Content on Engineering Properties of Chickpea Seed. Research Journal of Agricultural Sciences, 10(1): 180–184. https://www.researchgate.net/publication/303437276

Shelke, G., Kad, V., Yenge, G., Desai, S., & Kakde, S. (2020). Utilization of jamun pomace as functional ingredients to enhance the physico-chemical and sensory characteristics of ice cream. Journal of Food Processing and Preservation, 44(10): 1–8. 10.1111/jfpp.14736

Shelke, G., Kad, V., Pandiselvam, R., Yenge, G., Kakade, S., Desai, S., Kukde, R., & Singh, P. (2023). Physical and functional stability of spray-dried jamun (Syzygium cumini L) juice powder produced with different carrier agents. Journal of Texture Studies, 1: 1–11. 10.1111/jtxs.12749

Shelke, G., Kad, V., Yenge, G., Kukde, R., Kakade, S., Al-Dalain, S. Y., Haddad, M., Abdeen, A., et al. (2023). Physicochemical attributes, antioxidant activity, and sensory responses of low-fat cheese supplemented with spray-dried Jamun juice (Syzygium cumini L.) powder. Frontiers in Sustainable Food Systems, 7(8): 1–12. 10.3389/fsufs.2023.1243477

Shousha, E. R., Tayel, S. A., & Ghanem, T. H. (2024). Mass modeling of pomegranate fruit using some physical properties. Al-Azhar Journal of Agricultural Engineering 6, 6(1): 1–10.

Singh, K. K., & Reddy, B. S. (2020). Post-harvest physico-mechanical properties of orange peel and fruit. Journal of Food Engineering, 73: 112–120. 10.1016/j.jfoodeng.2005.01.010

Tewari, R., Kumar, V., & Sharma, H. K. (2019). Physical and chemical characteristics of different cultivars of Indian gooseberry (Emblica officinalis). Journal of Food Science and Technology, 56(3): 1641–1648. 10.1007/s13197-019-03595-y

Tomar, M. S., & Pradhan, R. C. (2022). Prediction of mass-based process designing parameters of amla fruit using different modeling techniques. Journal of Food Process Engineering, 45(8): 1–7. 10.1111/jfpe.14039

Vivek, K., Mishra, S., & Pradhan, R. C. (2018). Physicochemical characterization and mass modelling of Sohiong (Prunus nepalensis L.) fruit. Journal of Food Measurement and Characterization, 12(2): 923–936. 10.1007/s11694-017-9708-x

Yıldız, G., Izli, N., Unal, H., & Uylaser, V. (2015). Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology, 52(4): 2320–2327. 10.1007/s13197-014-1280-3

Younis, K., Islam, R. U., Jahan, K., Yousuf, B., & Ray, A. (2015). Effect of addition of mosambi (Citrus limetta) peel powder on textural and sensory properties of papaya jam. Cogent Food & Agriculture, 1(1): 1023675. 10.1080/23311932.2015.1023675