Chamuangone-rich rice bran oil ameliorates neurodegeneration in AlCl3/D-galactose model via modulation of behavioral, biochemical, and neurochemical parameters
Main Article Content
Keywords
Alzheimer’s disease, animal behavior, chamuangone-rich rice bran oil, neurochemical analysis, neuro-inflammation, phytomedicine
Abstract
Chamuangone is an exotic medicinal compound isolated from Garcinia cowa leaves. It shows great potential against inflammation, neurodegeneration, and oxidation. Through green extraction method, chamuangone-rich rice bran oil (CRBO) containing 1.97 mg/mL of chamuangone was obtained. This research study investigates the therapeutic effects of CRBO on D-galactose- and aluminum chloride (AlCl3)-induced Alzheimer’s disease in rat model. In all, 30 rats were divided into six groups and treated for 42 days as follows: control group (vehicle), disease control group (AlCl3 150 mg/kg + D-galactose 150 mg/kg p.o.), standard group (rivastigmine 3 mg/kg p.o.), and CRBO treatment groups with doses of 2.5, 5.0, and 7.5 mg/kg p.o. Neurobehavioral studies were performed on completion of 42 days. Furthermore, biochemical, neurochemical, and histopathological analyses were performed. CRBO treatment mitigated impairment in neuromuscular coordination, mentation and cognition in behavioral tasks. It potentially recovered (p < 0.001) the declined level of catalase, superoxide dismutase, reduced glutathione and lipid peroxidation. Neurochemical analysis revealed the restoration of serotonin, noradrenaline, and dopamine concentration in the brain after CRBO treatment. Histopathological examination of vital organs revealed recovery in CRBO-treated rats in a dose-dependent manner. Owing to neurotoxic effects of inducing agents, the level of acetylcholinesterase decreased in disease control group; however, CRBO treatment recovered the declined activity of this enzyme. Therefore, it is concluded that CRBO significantly recovered the neurodegenerative effects through multiple pathways, such as amelioration of oxidative stress and neuronal plasticity. Therefore, this innovative green remedy can be considered as a natural alternative for treating neurodegenerative disorders.
References
Alotaibi, B.S., Saleem, U., Ahmad, A., Chaudhary, Z., Farrukh, M., Khayat R.O., et al. 2024. Chamuangone-enriched rice bran oil ameliorates neurodegeneration in haloperidol-induced Parkinsonian rat model via modulation of neuro-inflammatory mediators and suppression of oxidative stress markers. Italian J Food Sci., 36(2):163–180. 10.15586/ijfs.v36i2.2551
Ansari, M.A., and Scheff, S.W. 2010. Oxidative stress in the progression of Alzheimer’s disease in the frontal cortex. J Neuropathol Exp Neurol. 69(2):155–167. 10.1097/NEN.0b013e3181cb5af4
Ayaz, M., Anwar, F., Saleem, U., Shahzadi, I., Ahmad, B., Mir, A., and Ismail, T. 2022. Parkinsonism attenuation by antihistamines via downregulating the oxidative stress, histamine, and inflammation. ACS Omega. 7(17):14772–14783. 10.1021/acsomega.2c00145
Bais, S., Gill, N., and Kumar, N. 2015. Neuroprotective effect of Juniperus communis on chlorpromazine-induced Parkinson’s disease in animal model. Chinese Journal of Biology, 2015:1–7. 10.1155/2015/542542
Bhatti, G.K., Reddy, A.P., Reddy, P.H., and Bhatti, J.S. 2020. Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front Aging Neurosci. 11:369. 10.3389/fnagi.2019.00369
Caraci, F., Santagati, M., Caruso, G., Cannavò, D., Leggio, G. M., Salomone, S., et al. 2020. New antipsychotic drugs for the treatment of agitation and psychosis in Alzheimer’s disease: focus on brexpiprazole and pimavanserin. F1000Res. 9:F1000 Faculty Rev-686. 10.12688/f1000research.22662.1
Casado, A., Encarnación López-Fernández, M., Concepción Casado, M., and de La Torre, R. 2008. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer’s dementias. Neurochem Res. 33:450–458. 10.1007/s11064-007-9453-3
Cerquera-Jaramillo, M.A., Nava-Mesa, M.O., González-Reyes, R.E., Tellez-Conti, C., and de-la-Torre, A. 2018. Visual features in Alzheimer’s disease: from basic mechanisms to clinical overview. Neural Plasticity. 2018:1–21. 10.1155/2018/2941783
Chauhdary, Z., Saleem, U., Ahmad, B., Shah, S., and Shah, M.A. 2019. Neuroprotective evaluation of Tribulus terrestris L. in aluminum chloride induced Alzheimer’s disease. Pak J Pharm Sci. 32(Sppl.2):805–816.
Chen, Z.-R., Huang, J.-B., Yang, S.-L., and Hong, F.-F. 2022. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 27(6):1816. 10.3390/molecules27061816
Chen, Z., and Zhong, C. 2014. Oxidative stress in Alzheimer’s disease. Neurosci Bullet. 30:271–281. 10.1007/s12264-013-1423-y
Citron, M. 2004. Strategies for disease modification in Alzheimer’s disease. Nature Rev Neurosci. 5(9):677–685. 10.1038/nrn1495
Craig-Schapiro, R., Fagan, A.M., and Holtzman, D.M. 2009. Biomarkers of Alzheimer’s disease. Neurobiol. Dis. 35(2):128–140. 10.1016/j.nbd.2008.10.003
Cummings, J., Lee, G., Ritter, A., and Zhong, K. 2018. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (NY). 4:195–214. 10.1016/j.trci.2018.03.009
Dugger, B.N., and Dickson, D.W. 2017. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspect Biol. 9(7):a028035. 10.1101/cshperspect.a028035
Fatima, N., Anwar, F., Saleem, U., Khan, A., Ahmad, B., Shahzadi, I. et al. 2022. Antidiabetic effects of Brugmansia aurea leaf extract by modulating the glucose levels, insulin resistance, and oxidative stress mechanism. Front Nutr. 9:1005341. 10.3389/fnut.2022.1005341
Förstl, H., and Kurz, A. 1999. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 249:288–290. 10.1007/s004060050101
Ghafouri, S., Fathollahi, Y., Javan, M., Shojaei, A., Asgari, A., and Mirnajafi-Zadeh, J. 2016. Effect of low frequency stimulation on impaired spontaneous alternation behavior of kindled rats in Y-maze test. Epilepsy Res. 126:37–44. 10.1016/j.eplepsyres.2016.06.010
Hampel, H., Mesulam, M.-M., Cuello, A.C., Farlow, M.R., Giacobini, E., Grossberg, G.T., et al. 2018. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 141(7):1917–1933. 10.1093/brain/awy132
Hua, X., Lei, M., Zhang, Y., Ding, J., Han, Q., Hu, G., et al. 2007. Long-term D-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sci. 80(20):1897–1905. 10.1016/j.lfs.2007.02.030
Jadhav, R.P., Kengar, M.D., Narule, O.V., Koli, V.W., and Kumbhar, S.B. 2019. A review on Alzheimer’s Disease (AD) and its herbal treatment of Alzheimer’s Disease. Asian J Res Pharm Sci. 9(2):112–122. 10.5958/2231-5659.2019.00017.1
Javaid, S.F., Giebel, C., Khan, M.A., and Hashim, M.J. 2021. Epidemiology of Alzheimer’s disease and other dementias: rising global burden and forecasted trends. F1000Res. 10:425. 10.12688/f1000research.50786.1
Kamel, A.S., Abdelkader, N.F., Abd El-Rahman, S.S., Emara, M., Zaki, H.F., and Khattab, M.M. 2018. Stimulation of ACE2/ANG (1–7)/Mas axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. Mol Neurobiol. 55:8188–8202. 10.1007/s12035-018-0966-3
Kim, J.-B., Kopalli, S.R., and Koppula, S. 2016. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop J Pharm Res. 15(4):765–772. 10.4314/tjpr.v15i4.14
Kim, D., and Tsai, L.-H. 2009. Bridging physiology and pathology in AD. Cell. 137(6):997–1000. 10.1016/j.cell.2009.05.042
Komada, M., Takao, K., and Miyakawa, T. 2008. Elevated plus maze for mice. JoVE. 22. 10.3791/1088-v
Kumar, A., and Singh, A. 2015. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 67(2):195–203. 10.1016/j.pharep.2014.09.004
Landau, G., Kodali, V.K., Malhotra, J.D., and Kaufman, R.J. 2013. Detection of oxidative damage in response to protein misfolding in the endoplasmic reticulum. In: Cadenas, E., and Packer, L. (Eds.) Methods in enzymology, Chap. 14, Vol. 526, pp. 231–250. Academic Press, Cambridge, MA. 10.1016/B978-0-12-405883-5.00014-4
Lopez, O.L., Becker, J.T., Sweet, R.A., Klunk, W., Kaufer, D. I., Saxton, J., et al. 2003. Psychiatric symptoms vary with the severity of dementia in probable Alzheimer’s disease. J Neuropsych Clin Neurosci. 15(3):346–353. 10.1176/jnp.15.3.346
Lovell, M.A., Ehmann, W.D., Butler, S.M., and Markesbery, W.R. 1995. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology. 45(8):1594–1601. 10.1212/WNL.45.8.1594
Lowry O.H. et al. 1951. Protein measurement with the folin phenol reagent. J Biol Chem. 193:265–275. 10.1016/S0021-9258(19)52451-6
Lu, X.-Y., Huang, S., Chen, Q.-B., Zhang, D., Li, W., Ao, R., et al. 2020. Metformin ameliorates Aβ pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer’s disease. Oxidative Med Cell Long. 2020. 10.1155/2020/2315106
Lubos, E., Loscalzo, J., and Handy, D.E. 2011. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 15(7):1957–1997. 10.1089/ars.2010.3586
Mahdi, O., Chiroma, S.M., Hidayat Baharuldin, M.T., Mohd Nor, N.H., Mat Taib, C.N., Jagadeesan, S., et al. 2021. WIN55, 212-2 attenuates cognitive impairments in AlCl3 + d-Galactose-Induced Alzheimer’s disease rats by enhancing neurogenesis and reversing oxidative stress. Biomedicines. 9(9):1270. 10.3390/biomedicines9091270
Mantzavinos, V., and Alexiou, A. 2017. Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res. 14(11):1149–1154. 10.2174/1567205014666170203125942
Martin, J.B. 1999. Molecular basis of the neurodegenerative disorders. N Engl J Med. 340(25):1970–1980. 10.1056/NEJM199906243402507
Moreira, P.I., Carvalho, C., Zhu, X., Smith, M.A., and Perry, G. 2010. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta (BBA). 1802(1):2–10. 10.1016/j.bbadis.2009.10.006
Nagata, T., Shinagawa, S., Nakajima, S., Noda, Y., and Mimura, M. 2022. Pharmacotherapeutic combinations for the treatment of Alzheimer’s disease. Expert Opin Pharmacother. 23(6):727–737. 10.1080/14656566.2022.2042514
Nandi, A., Yan, L.J., Jana, C.K., and Das, N. 2019. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med Cell Longev. 2019:9613090. 10.1155/2019/9613090
Nguyen, T.K.A., Nguyen, B.N., Hoang, T.M.N., Doan, L.P., Phan, M.G., Lee, H., et al. 2022. Six new polyoxygenated xanthones from garcinia cowa and their neuroprotective effects on glutamate-mediated hippocampal neuronal HT22 cell death. Chem Biodivers. 19(9):e202200376. 10.1002/cbdv.202200376
Nunez, J. 2008. Morris water maze experiment. J Vis Exp. (19). 10.3791/897
Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., and Stefanescu, C. 2010. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett. 469(1):6–10. 10.1016/j.neulet.2009.11.033
Pairojana, T., Phasuk, S., Suresh, P., Huang, S.-P., Pakaprot, N., Chompoopong, S., et al. 2021. Age and gender differences for the behavioral phenotypes of 3xTg Alzheimer’s disease mice. Brain Res. 1762:147437. 10.1016/j.brainres.2021.147437
Panichayupakaranant, P., and Sakunpak, A. 2013. Quantitative HPLC analysis of chamuangone in Garcinia cowa leaf extracts. Planta Medica. 79(13):PK29. 10.1055/s-0033-1352289
Piovesan, E.C., Freitas, B.Z.d., Lemanski, F.C.B., and Carazzo, C.A. 2023. Alzheimer’s disease: an epidemiological analysis over the number of hospitalizations and deaths in Brazil. Arquivos de Neuro-Psiquiatria. 81(06):577–584. 10.1055/s-0043-1767827
Qiu, C., Kivipelto, M., and Von Strauss, E. 2022. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialog Clin Neurosci. 11(2):111–128. 10.31887/DCNS.2009.11.2/cqiu
Reed, T.T. 2011. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 51(7):1302–1319. 10.1016/j.freeradbiomed.2011.06.027
Rudan, I., Sidhu, S., Papana, A., Meng, S.J., Xin–Wei, Y., Wang, W., and Sridhar, D. 2015. Prevalence of rheumatoid arthritis in low-and middle-income countries: a systematic review and analysis. J Glob Health. 5(1):10409. 10.7189/jogh.05.010409
Sae-Lim, P., Seetaha, S., Tabtimmai, L., Suphakun, P., Kiriwan, D., Panichayupakaranant, P., et al. 2020. Chamuangone from Garcinia cowa leaves inhibits cell proliferation and migration and induces cell apoptosis in human cervical cancer in vitro. J Pharm Pharmacol. 72(3):470–480. 10.1111/jphp.13216
Sae-Lim, P., Yuenyongsawad, S., and Panichayupakaranant, P. 2019a. Chamuangone-enriched Garcinia cowa leaf extract with rice bran oil: extraction and cytotoxic activity against cancer cells. Pharmacogn Mag. 15(61):183–188. 10.4103/pm.pm_472_18
Sae-Lim, P., Yuenyongsawad, S., and Panichayupakaranant, P. 2019b. Chamuangone-enriched Garcinia cowa leaf extract with rice bran oil: extraction and cytotoxic activity against cancer cells. Pharmacogn Mag. 15(61):183. 10.4103/pm.pm_472_18
Sakunpak, A., Matsunami, K., Otsuka, H., and Panichayupakaranant, P. 2017. Isolation of chamuangone, a cytotoxic compound against Leishmania major and cancer cells from Garcinia cowa leaves and its HPLC quantitative determination method. J Cancer Res Updates. 6(2):38–45. 10.6000/1929-2279.2017.06.02.3
Sakunpak, A., and Panichayupakaranant, P. 2012. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem. 130(4):826–831. 10.1016/j.foodchem.2011.07.088
Saleem, U., Chauhdary, Z., Islam, S., Zafar, A., Khayat, R.O., Althobaiti, N. A., et al. 2022. Sarcococca saligna ameliorated D-galactose induced neurodegeneration through repression of neurodegenerative and oxidative stress biomarkers. Metab Brain Dis. 38:717–734. 10.1007/s11011-022-01046-w
Saleem, U., Chauhdary, Z., Raza, Z., Shah, S., Rahman, M.-u., Zaib, P., et al. 2020. Anti-Parkinson’s activity of tribulus terrestris via modulation of AChE, α-Synuclein, TNF-α, and IL-1β. ACS Omega. 5(39):25216–25227. 10.1021/acsomega.0c03375
Saleem, U., Shehzad, A., Shah, S., Raza, Z., Shah, M.A., Bibi, S., et al. 2021. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab Brain Dis. 36:1231–1251. 10.1007/s11011-021-00707-6
Schliebs, R., and Arendt, T. 2006. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 113:1625–1644. 10.1007/s00702-006-0579-2
Sharma, P., Tripathi, A., Tripathi, P.N., Prajapati, S.K., Seth, A., Tripathi, M. K., and Shrivastava, S.K. 2019. Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease. Eur J Med Chem. 167:510–524. 10.1016/j.ejmech.2019.02.030
Shin, I.-S., Carter, M., Masterman, D., Fairbanks, L., and Cummings, J.L. 2005. Neuropsychiatric symptoms and quality of life in Alzheimer’s disease. Am J Geriatr Psychiatry. 13(6):469–474. 10.1097/00019442-200506000-00005
Singh, N.A., Bhardwaj, V., Ravi, C., Ramesh, N., Mandal, A.K.A., and Khan, Z.A. 2018. EGCG nanoparticles attenuate aluminum chloride-induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci. 10:244. 10.3389/fnagi.2018.00244
Sisodia, S.S. 1999. Series introduction: Alzheimer’s disease: perspectives for the new millennium. J Clin Invest. 104(9):1169–1170. 10.1172/JCI8508
Sultana, R., Perluigi, M., and Butterfield, D.A. 2013. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer’s disease brain. Free Radic Biol Med. 62:157–169. 10.1016/j.freeradbiomed.2012.09.027
Tran, D., Nguyen, H., Pham, T., Nguyen, A.T., Nguyen, H.T., Nguyen, N.B., et al. 2022. Resources for enhancing Alzheimer’s caregiver health in Vietnam (REACH VN): exploratory analyses of outcomes of a cluster randomized controlled trial to test the feasibility and preliminary efficacy of a family dementia caregiver intervention in Vietnam. Am J Geriatr Psychiatry. 30(8):878–882. 10.1016/j.jagp.2022.04.011
Tran, M., and Reddy, P. H. 2021. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front Neurosci. 14:612757. 10.3389/fnins.2020.612757
Ulep, M.G., Saraon, S.K., and McLea, S. 2018. Alzheimer disease. J Nurse Pract. 14(3):129–135. 10.1016/j.nurpra.2017.10.014
Vorhees, C.V., and Williams, M.T. 2006. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protoc. 1(2):848–858. 10.1038/nprot.2006.116
Walf, A.A., and Frye, C.A. 2007. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature Protoc. 2(2):322–328. 10.1038/nprot.2007.44
Winslow, B.T., Onysko, M.K., Stob, C.M., and Hazlewood, K.A. 2011. Treatment of Alzheimer disease. Am Fam Physician. 83(12):1403–1412.
Xing, Z., He, Z., Wang, S., Yan, Y., Zhu, H., Gao, Y., and Zhang, L. 2018. Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl 3-mediated Alzheimer’s disease. RSC Adv. 8(55):31646–31657. 10.1039/C8RA05356A
Yiannopoulou, K.G., and Papageorgiou, S.G. 2013. Current and future treatments for Alzheimer’s disease. Therap Adv Neurolog Disord. 6(1):19–33. 10.1177/1756285612461679
Yiannopoulou, K.G., and Papageorgiou, S.G. 2020. Current and future treatments in Alzheimer disease: an update. J Cent Nerv Syst Dis. 12:1179573520907397. 10.1177/1179573520907397
Yin, S., Ran, Q., Yang, J., Zhao, Y., and Li, C. 2020. Nootropic effect of neferine on aluminium chloride-induced Alzheimer’s disease in experimental models. J Biochem Mol Toxicol. 34(2):e22429. 10.1002/jbt.22429
Yorsin, S., Sriwiriyajan, S., and Chongsa, W. 2023. Vasorelaxing effect of Garcinia cowa leaf extract in rat thoracic aorta and its underlying mechanisms. J Trad Complement Med. 13(3):219–225. 10.1016/j.jtcme.2022.12.001
Zhang, Z., Zhang, Q., Xue, Y., Fang, H., and Wu, Z. 2023. Serum levels of reduced glutathione, oxidized glutathione, and glutathione reductase activity in minor recurrent aphthous stomatitis patients. J Dent Sci. 18(3):1103–1108. 10.1016/j.jds.2022.11.016