Statistical optimization for comparative hydrolysis and fermentation for hemicellulosic ethanolgenesis

Main Article Content

Asma Chaudhary
Ayesha Aihetasham
Smavia Younas
Nimra Bashir
Nageen Hussain
Sumaira Naz
Tariq Aziz
Thamer H Albekairi

Keywords

Bacillus cereus; ethanol production; fruit waste; separate saccharification and fermentation; xylanases

Abstract

The concept of ‘Energy from waste’ is one of the most focused areas of work to find a solution for controlling trash and combat energy crises. In Pakistan and other agricultural countries, because of their substantial use during the summer, watermelon peels as fruit waste are usually thrown out as a trash. This study supported the management of huge quantities of waste to value-added products at a commercial scale. The current study aims to select and subject xylanolytic and ethanologenic Bacillus cereus XG2 for watermelon peels valorization appropriately with comparison of three hydrolysis techniques. The study will be helpful for selection of economical and environmentally beneficial valorization strategies. For ethanalogenesis, separate hydrolysis and fermentation (SHF) protocols with Saccharomyces cerevisiae K7 and Metchnikowia cibodasensis Y34 were used. For hydrolysis, three different saccharification approaches, viz. dilute sulfuric acid, enzymatic hydrolysis (using Bacillus cereus XG2 xylanases), and combined acidic and enzymatic hydrolysis, were adopted. Two statistical models, Placket-Burman (hydrolysis) and Central composite design (ethanologenesis) were used. In untreated watermelon waste (WW), reducing sugar, total lipids, total carbohydrates, and protein contents were calculated as 16.70±0.05 g/L, 3.20±0.02 g/L, 28.7±0.04 g/L, and 3.70±0.03 g/L, respectively. Similarly, the lignin (15.51±0.22%), hemicellulose (17.20±2.30%). and cellulose (52.26±0.33%) contents were also analyzed. Based on the significance of the Plackett–Burman model for enzymatic saccharification, the released reducing sugars as well as total sugars were 21.62±0.01 g/L and 43.30±1.55 g/L, respectively, and enzymatic hydrolyzate was adopted for further fermentation experiments. By CCD model, the highest ethanol yield calculated for yeast Metchnikowia cibodasensis Y34 was 0.4±0.04 g/g of fermentable sugars at 32.5oC with 50% enzymatic hydrolysate of WW by incubating for 8 days. It was suggested that SHF could be a beneficial approach to increase the conversion of hemicellulose to fermentable sugars to produce bioethanol on a large scale.

Abstract 53 | PDF Downloads 38 XML Downloads 4 HTML Downloads 0

References

Abu-Gharbia M.A., El-Sawy N.M., Nasr A.M. and Zedan L.A. 2018. Isolation, optimization and characterization of cellulases and hemicellulases from Bacillus cereus LAZ 518 isolated from cow dung using corn cobs as lignocellulosic waste. J Pharm Appl Chem. 4(1): 1–13. https://doi.org/10.18576/jpac/040201
Alex S., Saira A., Nair D.S., Soni K.B., Sreekantan L., Rajmohan K. and Reghunath B.R. 2017. Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian J Biotechnol. 16(4): 663–666. https://api.semanticscholar.org/CorpusID:91263801.
Ali S.S., Wu J., Xie R., Zhou F., Sun J. and Huang M. 2017. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One, 12(7): e0181141. https://doi.org/10.1371/journal.pone.0181141
Alvira P., Tomas-Pejo E., Ballesteros M. and Negro M.J. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 101(13): 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Annamalai N., Thavasi R., Jayalakshmi S. and Balasubramanian T. 2009. Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated form marine environment. Indian J Biotech. 8(3): 291–297. https://api.semanticscholar.org/CorpusID:53466911
Arumugam R. and Manikandan M. 2011. Fermentation of pretreated hydrolyzates of banana and mango fruit wastes for ethanol production. Asian J Exp Biol Sci. 2(2): 246–256.
Association of Official Analytical Chemists (AOAC). 2012. Official Methods of Analysis of AOAC International, 18th Ed. AOAC, Gaithersburg, MD.
Azhar S., Henriksson G., Theliander H. and Lindström M.E. 2015. Extraction of hemicelluloses from fiberized spruce wood. Carbe Polym. 117: 19–24. https://doi.org/10.1016/j.carbpol.2014.09.050
Aziz T, Shah Z, Sarwar A, Ullah N, Khan AA, Sameeh MY, Cui H, Lin L. 2023. Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conv. Bioref. 1-11. https://doi.org/10.1007/s13399-023-04283-w

Bai Y., Huang H., Meng K., Shi P., Yang P., Luo, H., Luo, C., Feng, Y., Zhang, W. and Yao B. 2012 . Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem. 131(4): 1473–1478. https://doi.org/10.1016/j.foodchem.2011.10.036
Bajpai P. 2016 . Structure of Lignocellulosic Biomass, In: Bajpai, P. (Ed.), Pretreatment of Lignocellulosic Biomass for Biofuel Production, Springer Briefs in Molecular Science. Springer Singapore, Singapore, pp. 7–12. https://doi.org/10.1007/978-981-10-0687-6_2
Banka A.L., Albayrak Guralp S. and Gulari E. 2014. Secretory expression and characterization of two hemicellulases, xylanase, and β-xylosidase, isolated from Bacillus subtilis M015. Appl Biochem Biotechnol. 174: 2702–2710. https://doi.org/10.1007/s12010-014-1219-1
Bennett G.A., Lagoda A.A., Shotwell O.L. and Hesseltine C.W. 1981. Utilization of zearalenone-contaminated corn for ethanol production. J Am Oil Chem Soc. 58(11): 974–976. https://doi.org/10.1007/BF02659774
Bouacem K., Bouanane-Darenfed A., Boucherba N., Joseph M., Gagaoua M., Ben Hania W., Kecha, M., Benallaoua, S., Hacène, H., Ollivier, B. and Fardeau, M.L.,2014. Partial characterization of xylanase produced by Caldicoprobacter algeriensis, a new thermophilic anaerobic bacterium isolated from an Algerian hot spring. Appl Biochem Biotechnol. 174: 1969–1981. https://doi.org/10.1007/s12010-014-1153-2
Bradner J.R., Sidhu R.K., Gillings M. and Nevalainen K.M.H. 1999. Hemicellulase activity of antarctic microfungi. J App Microbiol. 87(3): 366–370. https://doi.org/10.1046/j.1365-2672.1999.00827.x
Camelia B., Cristiana T. and Gabriela, B. 2010. Yeast isolation and selection for bioethanol production from inulin hydrolysates. Innov Rom Food Biotechnol. (6):29–34. https://www.gup.ugal.ro/ugaljournals/index.php/IFRB/article/view/3350
Chakdar H., Kumar M., Pandiyan K., Singh A., Nanjappan K., Kashyap P.L. and Srivastava A.K. 2016. Bacterial xylanases: biology to biotechnology. 3 Biotech. 6: 1–15. https://doi.org/10.1007/s13205-016-0457-z
Chaudhary A. and Karita S. 2017. Screening of yeast isolates from flowers for effective ethanol production. Turk J Biol. 41(6): 890–900. https://doi.org/10.3906/biy-1704-7
Chaudhary A., Hussain I., Ahmad Q.A, Hussain Z., Akram A.M. and Hussain A. 2022. Efficient utilization of melon peels to produce ethanol: a step toward sustainable waste management. Biomass Convers Bioref. 14: 3463–3475. https://doi.org/10.1007/s13399-022-02687-8
Chaudhary A., Hussain A., Shehzadi A., Manzoor M., Shahbaz M. and Deepanraj B. 2023. Production of ethanol from xylan by indigenous xylanolytic and ethanologenic bacteria isolated from fruit wastes. Sustain Energy Technol Assessments. 57: 103216. https://doi.org/10.1016/j.seta.2023.103216
Chen W., Chen Y., Yang H., Xia M., Li K., Chen X. and Chen H. 2017. Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect. Bioresour Technol. 245: 860–868. https://doi.org/10.1016/j.biortech.2017.09.022
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.T. and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3): 350–356. https://doi.org/10.1021/ac60111a017
Fushinobu S., Hidaka M., Honda Y., Wakagi T., Shoun H. and Kitaoka, M. 2005. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. Journal of Biological Chem. 280(17): 17180–17186. https://doi.org/10.1074/jbc.M413693200
Ganju R.K., Vithayathil P.J. and Murthy S.K. 1989. Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol. 35(9): 836–842. https://doi.org/10.1139/m89-140
Guerriero G., Hausman J.F., Strauss J., Ertan H. and Siddiqui K.S. 2016. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci. 16(1): 1–16. https://doi.org/10.1002/elsc.201400196
Gupta A., Ahmad A., Chothwe D., Madhu M.K., Srivastava S. and Sharma V.K. 2019. Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Methylococcus capsulatus str. Bath. Peer J. 7: e6685. https://doi.org/10.7717/peerj.6685
Gupta V., Garg S., Capalash N., Gupta N. and Sharma P. 2015. Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for bio bleaching of kraft pulp and deinking of waste paper. Bioproc Biosyst Eng. 38(5): 947–956. https://doi.org/10.1007/s00449-014-1340-0
Honda Y. and Kitaoka M. 2004. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem. 279(53): 55097–55103. https://doi.org/10.1074/jbc.M409832200
Huang X., Li Z., Du C., Wang J. and Li S. 2015. Improved expression and characterization of a multi domain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. J Agric Food Chem. 63(28): 6430–6439. https://doi.org/10.1021/acs.jafc.5b01259
Isikgor F.H. and Becer C.R. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chem. 6(25): 4497–4559. https://doi.org/10.1039/C5PY00263J
Juturu V., Teh T.M. and Wu J.C. 2014. Expression of Aeromonas punctata ME-1 exo-xylanase X in E. coli for efficient hydrolysis of xylan to xylose. Appl Biochem Biotech. 174: 2653–2662. https://doi.org/10.1007/s12010-014-1216-4
Kamble R.D. and Jadhav A.R. 2012. Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. Int J Microbiol. 2012: 683193. https://doi.org/10.1155/2012/683193
Kassim M.A., Hussin A.H., Meng T.K., Kamaludin R., Zaki M.S.I.M. and Zakaria W.Z.E.W. 2022. Valorisation of watermelon (Citrullus lanatus) rind waste into bioethanol: An optimization and kinetic studies. Int J Environ Sci Technol. 19: 2545–2558. https://doi.org/10.1007/s13762-021-03310-5
Khan S., Nisar A., Wu B., Zhu Q.L., Wang Y.W., Hu G.Q. and He M.X. 2022. Bioenergy production in Pakistan: potential, progress, and prospect. Sci Total Environ. 814: 152872. https://doi.org/10.1016/j.scitotenv.2021.152872
Kubata B.K., Suzuki T., Horitsu H., Kawai K. and Takamizawa K. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl Environ Microbiol. 60(2): 531–535. https://doi.org/10.1128/aem.60.2.531-535.1994
Kubata B.K., Takamizawa K., Kawai K., Suzuki T. and Horitsu, H. 1995. Xylanase IV, an endoxylanase of Aeromonas caviae ME- 1 which produces xylotetraose as the only low molecular weight oligosaccharide from xylan. Appl Environ Microbiol. 61: 1666–1668. https://doi.org/10.1128/aem.61.4.1666-1668.1995
Kumar V. and Satyanarayana T. 2014. Production of endoxylanase with enhanced thermostability by a novel polyextremophilic Bacillus halodurans TSEV1 and its applicability in waste paper deinking. Proc Biochem. 49(3): 386–394. https://doi.org/10.1016/j.procbio.2013.12.005
Kumar R., Singh S. and Singh O.V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 35(5): 377–391. https://doi.org/10.1007/s10295-008-0327-8
Li Z, Tian-Tian L, Aziz T, Min Z, Sarwar A, Zhennai Y, Alharbi M, Alshammari A, Alasmari AF. 2023. Purification of Galacto-oligosaccharide (GOS) by fermentation with Kluyveromyces lactis and Interaction between GOS and casein under simulated acidic fermentation conditions. World J Microbiol Biotechnol.;39(12):342. https://doi.org/10.1007/s11274-023-03791-1
Lin L., Yan R., Liu Y. and Jiang W. 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour Technol. 101(21): 8217–8223. https://doi.org/10.1016/j.biortech.2010.05.084
Loow Y.L., Wu T.Y., Md. Jahim J., Mohammad A.W. and Teoh W.H. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose. 23: 1491–1520. https://doi.org/10.1007/s10570-016-0936-8
Loow Y.L., Wu T.Y., Tan K.A., Lim Y.S., Siow L.F., Md. Jahim J., Mohammad, A.W. and Teoh W.H. 2015. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. J Agric Food Chem. 63(38): 8349–8363. https://doi.org/10.1021/acs.jafc.5b01813
Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193: 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Narjis K, Najeeb U, Abid S, Tariq A, Metab A, Abdulrahman A. 2023. Isolation and Identification of Protease Producing Bacillus Strain from Cold Climate Soil and Optimization of its Production by applying Different Fermentation Conditions. Appl Ecol Environ Res. 21(4):3391-3401. http://dx.doi.org/10.15666/aeer/2104_33913401 .
Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3): 426–428. https://doi.org/10.1021/ac60147a030
Obiora C. 2022. Optimal cost of production of bioethanol: a review. Available at SSRN: https://ssrn.com/abstract=4171036 or http://dx.doi.org/10.2139/ssrn.4171036. https://doi.org/10.2139/ssrn.4171036
Raj A., Kumar S. and Singh S.K. 2013. A highly thermostable xylanase from Stenotrophomonas maltophilia: purification and partial characterization. Enzyme Res. 2013: 429305. https://doi.org/10.1155/2013/429305
Rashid R. and Sohail M. 2021. Xylanolytic Bacillus species for xylooligosaccharides production: a critical review. Bioresourc Bioprocess. 8(1): 1–14. https://doi.org/10.1186/s40643-021-00369-3
Saleem A., Hussain A., Chaudhary A., Ahmad Q.U.A., Iqtedar M., Javid A. and Akram A.M. 2020. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Conv Bioref. 12: 1513–1524. https://doi.org/10.1007/s13399-020-01117-x
Seneesrisakul K., Guralp S.A., Gulari E. and Chavadej S. 2017. Escherichia coli expressing endoglucanase gene from Thai higher termite bacteria for enzymatic and microbial hydrolysis of cellulosic materials. Elect J Biotechnol. 27: 70–79. https://doi.org/10.1016/j.ejbt.2017.03.009
Shah TA, Majeed T, Rahman SU, Ihsan T, Aziz T, Alharbi M, Alasmari AF, Alshammair M. 2023. Synergistic treatment of crude enzymes from Bacillus sp. strains to boost anaerobic fermentation of rice straw. Biomass Conv. Bioref. 1-10. https://doi.org/10.1007/s13399-023-05090-z
Subramaniyan S. and Prema P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol. 22(1): 33–64. https://doi.org/10.1080/07388550290789450
Tenkanen M., Vršanská M., Siika-aho M., Wong D.W., Puchart V., Penttilä M., Saloheimo, M. and Biely P. 2013. Tenkanen, M., Vršanská, M., Siika‐aho, M., Wong, D.W., Puchart, V., Penttilä, M., Saloheimo, M. and Biely, P., 2013Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J. 280(1): 285–301. https://doi.org/10.1111/febs.12069
Thomas L., Ushasree M.V. and Pandey A. 2014. An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. Bioresour Technol. 165: 309–313. https://doi.org/10.1016/j.biortech.2014.03.037
Toquero C. and Bolado S. 2014. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol. 157: 68–76. https://doi.org/10.1016/j.biortech.2014.01.090
Usui K., Ibata K., Suzuki T. and Kawai, K. 1999. XynX, a possible exo-xylanase of Aeromonas caviae ME-1 that produces exclusively xylobiose and xylotetraose from xylan. Biosci biotechnol biochem. 63(8): 1346–1352. https://doi.org/10.1271/bbb.63.1346
Ullah, N., Mujaddad-ur-Rehman, M., Sarwar, A. Nadeem M, Nelofar R, Irfan M, Idrees M, Ali U, Naz S, Aziz T. 2023. . Effect of bioprocess parameters on alkaline protease production by locally isolated Bacillus cereus AUST-7 using tannery waste in submerged fermentation. Biomass Conv. Bioref. 1-10. https://doi.org/10.1007/s13399-023-04498-x
Zöllner N. and Kirsch K. 1962. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Z Gesamte Exp Med. 135: 545–561. https://doi.org/10.1007/BF02045455