Investigating the potential of Fourier transform mid-infrared spectroscopy combined with chemometrics for detecting camel’s milk adulteration

Main Article Content

Omar Ait El Alia
Yassine Zine-Eddine
Said Souhassou
Salah Chaji
Irfan Aamer Ansari https://orcid.org/0000-0001-5375-0006
Zaker Rehan Mohammed
Fouzia Kzaiber
Abdelkhalek Oussama
Siddique Akber Ansari
Khalid Boutoial

Keywords

camel’s milk, cow’s milk, vibrational spectroscopy, chemometrics, adulteration

Abstract

This study explores the effectiveness of mid-infrared (MIR) spectroscopy in combination with chemometrics as an alternative to sensory analysis for detecting camel’s milk adulteration with cow’s milk. A paired comparison test involving various concentrations of adulterants was initially conducted to assess consumers’ ability to detect such adulteration. The analysis successfully classified samples into adulterated and authentic camel’s milk using principal component (PC) analysis and hierarchical cluster analysis. Moreover, the application of partial least squares regression and PC regression calibration models demonstrated high-performance capabilities in revealing the level of adulteration. These findings highlight the potential of MIR spectroscopy combined with chemometrics for the authentication of camel’s milk.

Abstract 132 | PDF Downloads 86 HTML Downloads 0 XML Downloads 8

References

FAOSTAT, 2023. Food and Agiculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/ (accessed on 1 December 2023).

Ahmed, A., and Sayed, R. 2014. Nutritional value and sanitary evaluation of raw camels milk. Emir. J. Food Agric. 26(4): 317–326. 10.9755/ejfa.v26i4.16158

Ait El Alia, O., Zine-eddine, Y., Kzaiber, F., Oussama, A., and Boutoial, K. 2023. Towards the improvement of camel milk consumption in Morocco. Small Rumin. Res. 219: 106888. 10.1016/j.smallrumres.2022.106888

Azad, T., and Ahmed, S. 2016. Common milk adulteration and their detection techniques. Int. J. Food Contam. 3: 22. 10.1186/s40550-016-0045-3

Chanana, S., Thomas, C. S., Zhang, F., Rajski, S. R., and Bugni, T. S. 2020. HCAPCA: Automated hierarchical clustering and principal component analysis of large metabolomic datasets in R. Metabolites 10(7): 297. 10.3390/metabo10070297

Dominici, A., Boncinelli, F., Gerini, F., and Marone, E. 2021. Determinants of online food purchasing: The impact of socio-demographic and situational factors. J. Retail. Consum. Serv. 60: 102473. 10.1016/j.jretconser.2021.102473

Elhamdaoui, O., Orche, A. El, Cheikh, A., Mojemmi, B., Nejjari, R., and Bouatia, M. 2020. Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools. J. Anal. Methods Chem. 2020: 8816249. 10.1155/2020/8816249

Etzion, Y., Linker, R., Cogan, U., and Shmulevich, I. 2004. Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci. 87(9): 2779–2788. 10.3168/jds.S0022-0302(04)73405-0

Grassi, S., Tarapoulouzi, M., D’Alessandro, A., Agriopoulou, S., Strani, L., and Varzakas, T. 2023. How chemometrics can fight milk adulteration. Foods 12:139. 10.3390/foods12010139

Haj, O. A. Al and Kanhal, H. A. Al 2010. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 20(12): 811–821. 10.1016/j.idairyj.2010.04.003

Hammam, A. R. A. 2019. Compositional and therapeutic properties of camel milk: A review. Emir. J. Food Agric. 31(3): 148–152. 10.9755/ejfa.2019.v31.i3.1919

Hirri, A., Bouchafra, H., Zarayby, L., Kasrati, A., and Otmani, I. S. El 2023. Development of fast analytical method for the detection and quantification of Moroccan Picholine extra virgin olive oil adulteration using MIR spectroscopy and chemometrics tools. Curr. Chem. Lett. 12(3): 579–586. 10.5267/j.ccl.2023.2.005

ISO-5495 2005. ISO 5495: Sensory Analysis − Methodology–Paired Comparison Test. Geneva, Switzerland: International Organization for Standardization.

Kamal, M., and Karoui, R. 2015. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci. Technol. 46(1): 27–48. 10.1016/j.tifs.2015.07.007

Kamal, M., and Karoui, R. 2017. Monitoring of mild heat treatment of camel milk by front-face fluorescence spectroscopy. LWT—Food Sci. Technol. 79: 586–593. 10.1016/j.lwt.2016.11.013

Kumar, D., Verma, A. K., Chatli, M. K., Singh, R., Kumar, P., Mehta, N., and Malav, O. P. 2016. Camel milk: Alternative milk for human consumption and its health benefits. Nutr. Food Sci. 46(2): 217–227. 10.1108/NFS-07-2015-0085

Li, L., Wang, J., Li, M., Yang, Y., Wang, Z., Miao, J., et al. 2021. Detection of the adulteration of camel milk powder with cow milk by ultra-high performance liquid chromatography (UPLC). Int. Dairy J. 121: 105117. 10.1016/j.idairyj.2021.105117

Mabood, F., Jabeen, F., Ahmed, M., Hussain, J., Mashaykhi, S. A. A. Al, Rubaiey, Z. M. A. Al, et al. 2017. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chem. 221: 746–750. 10.1016/j.foodchem.2016.11.109

Miller, J. N., and Miller, J. C. 2000. Statistics and Chemometrics for Analytical Chemistry, Pearson Education, London, UK.

Mohamed, H., Nagy, P., Agbaba, J., and Kamal-Eldin, A. 2021. Use of near and mid-infrared spectroscopy for analysis of protein, fat, lactose and total solids in raw cow and camel milk. Food Chem. 334: 127436. 10.1016/j.foodchem.2020.127436

Mouftari, M. El, Mahjoubi, F., Kzaiber, F., Terouzi, W., Ali, G., Souhassou, S., and Oussama, A. 2021. Study of oleaster oil’s falsification by ATR-FTIR and chemometrics tools. Egypt. J. Chem. 64(6): 2747–2755. 10.21608/ejchem.2021.53644.3107

Orche, A. El, Bouatia, M., and Mbarki, M. 2020. Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms. J. Anal. Methods Chem. 2020: 9. 10.1155/2020/8860161

Orche, A. El, Elhamdaoui, O., Cheikh, A., Zoukeni, B., Karbane, M. El, Mbarki, M., and Bouatia, M. 2022. Comparative study of three fingerprint analytical approaches based on spectroscopic sensors and chemometrics for the detection and quantification of argan oil adulteration. J. Sci. Food Agric. 102(1): 95–104. 10.1002/jsfa.11335

Panero, J. S., Silva, H. E. B. da, Panero, P. S., Smiderle, O. J., Panero, F. S., Faria, F. S. E. D. V., and Rodriguez, A. F. R. 2018. Separation of cultivars of soybeans by chemometric methods using near infrared spectroscopy. J. Agric. Sci. 10(4): 351. 10.5539/jas.v10n4p351

Profeta, A., Enneking, U., Claret, A., Guerrero, L., and Heinz, V. 2022. Consumer acceptance and preference for camel milk in selected European and Mediterranean countries. Sustainability 14(22): 15424. 10.3390/su142215424

Redwan, E. M., and Uversky, V. N. 2022. Latent potentials of camel’s milk. Eur. Food Res. Technol. 248(4): 1161–1162. 10.1007/s00217-022-03969-1

Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., and Jent, N. 2007. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 44(3): 683–700. 10.1016/j.jpba.2007.03.023

Shi, Q., Niu, G., Lin, Q., Xu, T., Li, F., and Duan, Y. 2015. Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: Comparison of support vector regression and partial least squares regression chemometric methods. J. Anal. At. Spectrom. 30(12): 2384–2393. 10.1039/c5ja00255a

Singh, R., Mal, G., Kumar, D., Patil, N. V., and Pathak, K. M. L. 2017. Camel milk: An important natural adjuvant. Agric. Res. 6(4): 327–340. 10.1007/s40003-017-0284-4

Souhassou, S., Bassbasi, M., Hirri, A., Kzaiber, F., and Oussama, A. 2018. Detection of camel milk adulteration using Fourier transformed infrared spectroscopy FT-IR coupled with chemometrics methods. Int. Food Res. J. 25(3): 1213–1218.

Swelum, A. A., El-Saadony, M. T., Abdo, M., Ombarak, R. A., Hussein, E. O. S., Suliman, G., Alhimaidi, A. R., et al. 2021. Nutritional, antimicrobial and medicinal properties of camel’s milk: A review. Saudi J. Biol. Sci. 28(5): 3126–3136. 10.1016/j.sjbs.2021.02.057

Varela, P., and Ares, G. 2012. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 48(2): 893–908. 10.1016/j.foodres.2012.06.037

Wajahat, W., Azad, Z. R. A. A., Nazir, S., and Nasir, G. 2022. Real-time PCR coupled with melt curve analysis for detecting the authenticity of camel milk. J. Food Sci. Technol. 59(4): 1538–1548. 10.1007/s13197-021-05164-8

Wang, Z., Li, T., Yu, W., Qiao, L., Liu, R., Li, S., Zhao, Y., Yang, S., and Chen, A. 2020. Determination of content of camel milk in adulterated milk samples by normalized real-time polymerase chain reaction system based on single-copy nuclear genes. J. Sci. Food Agric. 100(8): 3465–3470. 10.1002/jsfa.10382

Windarsih, A., Rohman, A., Irnawati and Riyanto, S. 2021. The combination of vibrational spectroscopy and chemometrics for analysis of milk products adulteration. Int. J. Food Sci. 2021: 1–15. 10.1155/2021/8853358

Wu, X., Na, Q., Hao, S., Ji, R., and Ming, L. 2022. Detection of ovine or bovine milk components in commercial camel milk powder using a PCR-based method. Molecules 27(9): 3017. 10.3390/molecules27093017

Yim, O., and Ramdeen, K. T. 2015. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. Quant. Meth. Psych. 11(1): 8–21. 10.20982/tqmp.11.1.p008

Zine-eddine, Y., Zinelabidine, L. H., Kzaiber, F., Oussama, A., and Boutoial, K. 2021. The use of paired comparison test on the goat’s milk adulteration detection (whole and semiskimmed). J. Sens. Stud. vol. 36(5): e12690. 10.1111/joss.12690