Garlic greening: Pigments biosynthesis and control strategies

Main Article Content

Alberto De Iseppi
Andrea Curioni
Matteo Marangon
Simone Vincenzi
Giovanna Lomolino

Keywords

Abstract

Greening is a major problem for garlic’s quality. This phenomenon leads to discoloration of the product and is directly related to the alliinase-catalyzed conversion of isoalliin into 1-propenyl-containing thiosulfates. Garlic crushing, refrigeration, and storage in normal atmosphere, as well as in the presence of monocarboxylic acids, are established the main factors that promote its greening. In last decades, the study of biochemical pathway of this phenomenon has allowed to effectively understand the main steps and key enzymes involved, and to identify optimum conditions for chemical and enzymatic reactions leading to discoloration. These findings have, in some cases, determined the development of new tools for the control of garlic greening on large scale. After providing an updated description of the biochemistry of green pigments produced in garlic, this review reports an overview on the strategies for controlling discoloration of garlic at industrial level.

Abstract 104 | PDF Downloads 50 XML Downloads 4 HTML Downloads 9

References

Aghajanzadeh T.A., Reich M., Hawkesford M.J. and Burow, M. 2019. Sulfur metabolism in Allium cepa is hardly affected by chloride and sulfate salinity. Archives of Agronomy and Soil Science 65(7):945. https://doi.org/10.1080/03650340.2018.1540037
Bai B., Li L., Hu X., Wang Z. and Zhao G. 2006. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids. Journal of Agricultural and Food Chemistry 54(21):8103. https://doi.org/10.1021/jf061628h
Banerjee S.K., Mukherjee P.K. and Maulik S.K. 2003. Garlic as an antioxidant: the good, the bad and the ugly. Phytotherapy Research 17(2):97. https://doi.org/10.1002/ptr.1281
Baysal T., Icier F., Ersus S. and Yildiz H. 2003. Effects of microwave and infrared drying on the quality of carrot and garlic. Journal of European Food Research and Technology 218(1):68. https://doi. org/10.1007/s00217-003-0791-3
Binder S. 2010. Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book 8:e0137. https://doi. org/10.1199/tab.0137
Block E. 1992. The organosulfur chemistry of the genus Allium – implications for the organic chemistry of sulfur. Angewandte Chemie International Edition English. 31(9):1135. https://doi. org/10.1002/anie.199211351
Block E. 2010. “Garlic and Other Alliums – the Lore and the Science”. Royal Society of Chemistry (RSC), Cambridge, UK.
Block E., Dethier B., Bechand B., Cotelesage J.J.H., George G.N., Goto K., et al. 2018. Ajothiolanes: 3,4-dimethylthiolane natural products from garlic (Allium sativum). Journal of Agricultural and Food Chemistry 66(39):10193. https://doi.org/10.1021/acs. jafc.8b03638
Borlinghaus J., Albrecht F., Gruhlke M.C.H., Nwachukwu I.D. and Slusarenko A.J. 2014. Allicin: chemistry and biological properties. Molecules 19(8):12591. https://doi.org/10.3390/ molecules190812591
Cantwell M.I., Hong G., Kang J. and Nie X. 2003. Controlled atmospheres retard sprout growth, affect compositional changes, and maintain visual quality attributes of garlic. Acta Horticulturae 600:791. https://doi.org/10.17660/ActaHortic.2003.600.122
Ceci L.N., Curzio O.A. and Pomilio A.B. 1992. Effects of irradiation and storage on the ?-glutamyl transpeptidase activity of garlic bulbs cv ‘red.’ Journal of the Science of Food and Agriculture 59(4):505. https://doi.org/10.1002/jsfa.2740590413
Cho J., Lee E.J., Yoo K.S. and Lee S.K. 2012. Role of precursors on greening in crushed garlic (Allium sativum) bulbs, and its control with freeze-dried onion powder. Journal of the Science of Food and Agriculture 92(2):246. https://doi.org/10.1002/jsfa.4568
Cho J., Lee E.J., Yoo K.S., Lee S.K. and Patil B.S. 2009. Identification of candidate amino acids involved in the formation of blue pigments in crushed garlic cloves (Allium sativum L.). Journal of Food Science 74(1):C11. https://doi. org/10.1111/j.1750-3841.2008.00986.x
Cho J., Park M., Choi D. and Lee S.K. 2012. Cloning and expression of ?-glutamyl transpeptidase and its relationship to greening in crushed garlic (Allium sativum) cloves. Journal of the Science of Food and Agriculture 92(2):253. https://doi.org/10.1002/jsfa.4610
Comparini D., Nguyen H.T. H., Ueda K., Moritaka K., Kihara T. and Kawano T. 2018. Effect of different light spectra on the pigmentation of stored elephant garlic. Journal of the Science of Food and Agriculture 98(7):2598. https://doi.org/10.1002/jsfa.8752
Duan X., Liu W.C., Ren G.Y., Yang X.T. and Liu Y.H. 2015. Atmospheric freeze drying garlic slices based on freezing point depression. International Journal of Agricultural and Biological Engineering 8(4):133.
Fante L. and Noreña C.P.Z. 2015. Quality of hot air dried and freeze-dried of garlic (Allium sativum L.). Journal of Food Science and Technology 52(1):211. https://doi.org/10.1007/ s13197-013-1025-8
FAOSTAT. 2016. Statistical database. Available at: www.fao.org/ faostat/
Farkas J. 2006. Irradiation for better foods. Trends in Food Science and Technology. 17(4):148. https://doi.org/10.1016/j. tifs.2005.12.003
Granroth B. 1970. Biosynthesis and decomposition of cysteine derivatives in onion and other Allium species. Annales Academiae Scientiarum Fennicae–Chemistry 154:4.
Grzam A., Martin M.N., Hell R. and Meyer A.J. 2007. ?-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Letters 581(17):3131. https://doi.org/10.1016/j.febslet.2007.05.071
He Y., Fan G.J., Wu C., Kou X. and Li T. 2019. Influence of illumination on the greening and relative enzyme activity of garlic puree. Journal of Food Biochemistry 43(7):e12871. https://doi. org/10.1111/jfbc.12871
Hong S.I. and Kim D.M. 2001. Storage quality of chopped garlic as influenced by organic acids and high-pressure treatment. Journal of the Science of Food and Agriculture 81(4):397. https://doi.org/10.1002/1097-0010(200103)81:4<397::AID-JS-FA831>3.0.CO;2-R
Hu D., Zhang J., Zhang T., Dong J., Leng X. and Zhao G. 2010. Characterization of yellow pigments formed on reaction of 2-(1H-pyrrolyl)carboxylic acids with pyruvic acid in garlic greening model systems. Food Research International 43(3):915. https://doi.org/10.1016/j.foodres.2009.12.009
Huang Z., Zhou Q., Wu W.L., Wan J. and Jiang A.M. 2019. Thermal kinetics of enzyme inactivation, color changes, and allicin degradation of garlic under blanching treatments. Journal of Food Process Engineering 42(3):e12991. https://doi.org/10.1111/ jfpe.12991
?lter I., Aky?l S., Devseren E., Okut D., Koç M. and Kaymak Ertekin F. 2018. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Journal of Heat and Mass Transfer 54(7):2101. https://doi.org/10.1007/s00231-018-2294-6
Imai S., Akita K., Tomotake M. and Sawada H. 2006a. Model stud-ies on precursor system generating blue pigment in onion and garlic. Journal of Agricultural and Food Chemistry 54(3):848. https://doi.org/10.1021/jf051980f
Imai S., Akita K., Tomotake M. and Sawada H. 2006b. Identification of two novel pigment precursors and a reddish-purple pigment involved in the blue-green discoloration of onion and garlic. Journal of Agricultural and Food Chemistry 54(3):843. https:// doi.org/10.1021/jf0519818
Imai S., Tsuge N., Tomotake M., Nagatome Y., Sawada H., Nagata T., et al. 2002. An onion enzyme that makes the eyes water. Nature 419(6908):685. https://doi.org/10.1038/419685a
Kim W. J., Cho J.S. and Kim K.H. 1999. Stabilization of ground garlic color by cysteine, ascorbic acid, trisodium phosphate and sodium metabisulfite. Journal of Food Quality 22(6):681. https:// doi.org/10.1111/j.1745-4557.1999.tb00281.x
Kopec A., Piatkowska E., Leszczynska T. and Sikora E. 2013. Healthy properties of garlic. Current Nutrition & Food Science 9(1):59. https://doi.org/10.2174/157340113804810888
Kubec R., Curko P., Urajová P., Rubert J. and Hajšlová J. 2017. Allium discoloration: color compounds formed during greening of processed garlic. Journal of Agricultural and Food Chemistry 65(48):10615. https://doi.org/10.1021/acs.jafc.7b04609
Kubec R., Hrbá?ová M., Musah R.A. and Velíšek J. 2004. Allium discoloration: precursors involved in onion pinking and garlic greening. Journal of Agricultural and Food Chemistry 52(16):5089. https://doi.org/10.1021/jf0497455
Kubec R., Štefanová I., Moos M., Urajová P., Kuzma M. and Zápal J. 2018. Allithiolanes: nine groups of a newly discovered fam-ily of sulfur compounds responsible for the bitter off-taste of processed onion. Journal of Agricultural and Food Chemistry 66(33):8783. https://doi.org/10.1021/acs.jafc.8b03118
Kubec R., Urajová P., Lacina O., Hajšlová J., Kuzma M. and Zápal  J. 2015. Allium discoloration: color compounds formed during pinking of onion and leek. Journal of Agricultural and Food Chemistry 63(46):10192. https://doi.org/10.1021/acs. jafc.5b04564
Kubec R. and Velíšek J. 2007. Allium discoloration: the color-forming potential of individual thiosulfinates and amino acids: struc-tural requirements for the color-developing precursors. Journal of Agricultural and Food Chemistry 55(9):3491. https://doi. org/10.1021/jf070040n
Ku?erová P., Kubec R., Šimek P., Václavík L. and Schraml J. 2011. Allium discoloration: the precursor and formation of the red pigment in giant onion (Allium giganteum Regel) and some other subgenus Melanocrommyum species. Journal of Agricultural and Food Chemistry 59(5):1821. https://doi.org/10.1021/jf104195k
Lancaster J.E. and Collin H.A. 1981. Presence of alliinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Allium cepa). Plant Science Letters 22(2):169. https://doi.org/10.1016/0304-4211(81)90139-5
Lancaster J.E., and Shaw M.L. 1989. ?-Glutamyl peptides in the biosynthesis of S-alk(en)yl-l-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry 28(2):455. https://doi. org/10.1016/0031-9422(89)80031-7
Lancaster J.E. and Shaw M.L. 1991. Metabolism of ?-glutamyl peptides during development, storage and sprouting of onion bulbs. Phytochemistry 30(9):2857. https://doi.org/10.1016/ S0031-9422(00)98212-8
Lanzotti V. 2006. The analysis of onion and garlic. Journal of Chromatography A 1112(1–2):3. https://doi.org/10.1016/j. chroma.2005.12.016
Lee J.Y., Lee H.J. and Kyung K.H. 2013. Green pigmentation characteristics of amino compounds with thiosulfinates obtained from garlic (Allium sativum L.). Food Science and Biotechnology 22(2):373. https://doi.org/10.1007/s10068-013-0090-0
Lee E.J., Yoo K.S. and Patil B.S. 2010. Identification of candi-date amino acids involved in the formation of pink-red pigments in onion (Allium cepa L.) juice and separation by HPLC. Journal of Food Science 75(8):C684. https://doi. org/10.1111/j.1750-3841.2010.01814.x
Lee E.J., Yoo K.S. and Patil B.S. 2012. Freeze-dried fresh onion powder prevents green discolouration (greening) in macerated garlic. Food Chemistry 131(2):397. https://doi.org/10.1016/j. foodchem.2011.08.071
Li L., Hu D., Jiang Y., Chen F., Hu X. and Zhao G. 2008. Relationship between ?-glutamyl transpeptidase activity and garlic greening, as controlled by temperature. Journal of Agricultural and Food Chemistry 56(3):941. https://doi.org/10.1021/jf072470j
Li L., Wang D., Li X., Wang Y. and Ju X. 2015. Elucidation of colour development and microstructural characteristics of Allium sativum fumigated with acetic acid. International Journal of Food Science and Technology 50(5):1083. https://doi.org/10.1111/ijfs.12751
Lukes T.M. 1986. Factors governing the greening of garlic puree. Journal of Food Science 51(6):1577. https://doi.org/10.1111/ j.1365-2621.1986.tb13869.x
Madhu B., Mudgal V.D. and Champawat P.S. 2019. Storage of garlic bulbs (Allium sativum L.): a review. Journal of Food Process Engineering 42(6):e13177. https://doi.org/10.1111/jfpe.13177
Martins N., Petropoulos S. and Ferreira I.C.F.R. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: a review. Food Chemistry 211:41. https://doi.org/10.1016/j. foodchem.2016.05.029
Mishra R., Upadhyay S.K. and Maheshwari P.N. 2001. Stability of allicin in garlic – a kinetic study. Indian Journal of Chemical Technology 8(3):195.
Mochizuki E., Nakayama A., Kitada Y., Saito K., Nakazawa H., Suzuki S. and Fujita M. 1988. Liquid chromatographic determination of alliin in garlic and garlic products. Journal of Chromatography 455:271. https://doi.org/10.1016/S0021-9673(01)82125-7
Rahman M.S. 2007. Allicin and other functional active components in garlic: health benefits and bioavailability. International Journal of Food Properties. 10(2):245. https://doi. org/10.1080/10942910601113327
Rejano L., Sanchez A.H., De Castro A. and Montano A. 1997. Chemical characteristics and storage stability of pickled garlic prepared using different processes. Journal of Food Science 62(6):1120. https://doi.org/10.1111/j.1365-2621.1997.tb12226.x
Shimon L.J.W., Rabinkov A., Shin I., Miron T., Mirelman D., Wilchek  M., et al. 2007. Two structures of alliinase from Alliium sativum L.: apo form and ternary complex with aminoacrylate reaction intermediate covalently bound to the PLP cofactor. Journal of Molecular Biology 366(2):611. https://doi. org/10.1016/j.jmb.2006.11.041
Silvaroli J.A., Pleshinger M.J., Banerjee S., Kiser P.D. and Golczak M. 2017. Enzyme that makes you cry – crystal structure of lachry-matory factor synthase from Allium cepa. ACS Chemical Biology 12(9):2296. https://doi.org/10.1021/acschembio.7b00336
Speranza G. and Morelli C.F. 2012. ?-Glutamyl transpeptidase-catalyzed synthesis of naturally occurring flavor enhancers. Journal of Molecular Catalysis B: Enzymatic 84:65. https://doi. org/10.1016/j.molcatb.2012.03.014
Štefanová I., Zápal J., Moos M., Kuzma M. and Kubec R. 2019. Isoalliin-derived thiolanes formed in homogenized onion. Journal of Agricultural and Food Chemistry 67(35):9895. https:// doi.org/10.1021/acs.jafc.9b01384
Stoll A. and Seebeck E. 1948. Allium compounds. I. Alliin, the true mother compound of garlic oil. Helvetica Chimica Acta 31:189. https://doi.org/10.1002/hlca.19480310140
Stoll A. and Seebeck E. 1949a. Allium compounds. II. Enzymatic degradation of alliin and the properties of alliinase. Helvetica Chimica Acta 32:197. https://doi.org/10.1002/hlca.19490320129
Stoll A. and Seebeck E. 1949b. Allium compounds. III. Specificity of alliinase and synthesis of compounds related to alliin. Helvetica Chimica Acta. 32:866. https://doi.org/10.1002/hlca.19490320330
Stoll A. and Seebeck E. 1951. Chemical investigations on alliin, the specific principle of garlic. In “Advances in Enzymology and Related Areas of Molecular Biology,” Vol. 11. F.F. Nord (Ed.), p. 377. John Wiley, New York, NY. https://doi. org/10.1002/9780470122563.ch8
Suzuki T., Sugii M. and Kakimoto T. 1962. Metabolic incorporation of L-valine-[14C] into S-(2-carboxypropyl)glutathione and S-(2-carboxypropyl)cysteine in garlic. Chemical and Pharmaceutical Bulletin 10(4):328. https://doi.org/10.1248/cpb.10.328
Tao D., Zhou B., Zhang L., Hu X., Liao X. and Zhang Y. 2016. “Laba” garlic processed by dense phase carbon dioxide: the relation between green colour generation and cellular structure, alliin consumption and alliinase activity. Journal of the Science of Food and Agriculture 96(9):2969. https://doi.org/10.1002/jsfa.7463
Uddin M.M. and MacTavish H.S. 2003. Controlled atmosphere and regular storage-induced changes in S-alk(en)yl-L-cysteine sulf-oxides and alliinase activity in onion bulbs (Allium cepa L. cv. Hysam). Postharvest Biology and Technology 28(2):239. https:// doi.org/10.1016/S0925-5214(02)00195-3
Utama-ang N., Cheewinworasak T., Simawonthamgul N. and Samakradhamrongthai R.S. 2018. Effect of drying condition of Thai garlic (Allium sativum L.) on physicochemical and sensory properties. International Food Research Journal 25(4):1365.
Volk G.M., Rotindo K.E. and Lyons W. 2004. Low-temperature stor-age of garlic for spring planting. Horticulture Science 39(3):571. https://doi.org/10.21273/HORTSCI.39.3.571
Wang D., Nanding H., Han N., Chen F. and Zhao G. 2008. 2-(1H-pyrrolyl)carboxylic acids as pigment precursors in gar-lic greening. Journal of Agricultural and Food Chemistry 56(4):1495. https://doi.org/10.1021/jf073025r
Yamazaki Y., Yamamoto T. and Okuno T. 2012. Causes and remedies for green discoloration of processed garlic puree: effects of stor-age conditions on ingredient bulbs. Food Science and Technology Research 18(2):187. https://doi.org/10.3136/fstr.18.187
Yin J., Zhu J., Fu L. and Li J. 2009. Purification and properties of ?-glutamyltranspeptidase from Lentinula edodes. Acta Edulis Fungi. 16:31.
Yoshimoto N., Onuma M., Mizuno S., Sugino Y., Nakabayashi  R., Imai S., et al. 2015. Identification of a flavin-containing S-oxygenating monooxygenase involved in alliin biosynthesis in garlic. Plant Journal 83(6):941. https://doi.org/10.1111/tpj.12954
Yoshimoto N., Saito K. and Kopriva S. 2019. S-Alk(en)ylcysteine sulfoxides in the genus Allium: proposed biosynthesis, chemical conversion, and bioactivities. Journal of Experimental Botany 70(16):4123. https://doi.org/10.1093/jxb/erz243
Zang J., Wang D. and Zhao G. 2013. Mechanism of discoloration in processed garlic and onion. Trends in Food Science and Technology 30(2):162. https://doi.org/10.1016/j.tifs.2013.01.008