EFFECT OF DIFFERENT STORAGE CONDITIONS ON THE SHELF LIFE OF NATURAL GREEN TABLE OLIVES

Main Article Content

S.J. LOMBARDI
V. MACCIOLA
M. IORIZZO
A. DE LEONARDIS

Keywords

microbial count, natural green olives, oil oxidation, phenols, sensory profile

Abstract

The aim of this research is to study the effects of different storage conditions on Spanish (alkaline debittering) and natural (directly brined) green olives. Laboratory-processed olives were stored in 6% brine or in a vacuum bag without brine, at 6 or 20°C. After 18 months, natural olives showed higher microbial and olive oil stability than NaOH-treated olives. The lower pH (<4.80) and higher total phenol content (0.2 g/100 g wet pulp) influenced positively the long shelf life of natural olives. The packaging in 6% NaCl brine and in a vacuum bag stored at 20°C gave better performance, while growth of psychrophilic spoilage bacteria occurred at cold temperature.

Abstract 349 | pdf Downloads 448

References

Ambra R., Natella F., Bello C., Lucchetti S., Forte V. and Pastore G. (2017). Phenolics fate in table olives (Olea europaea L. cv. Nocellara del Belice) debittered using the Spanish and Castelvetrano methods. Food Research International 100, 369-376.

American Oil Chemists' Society (AOCS) (1998). Official methods and recommended practices of the American Oil Chemists' Society. D. Firestone (Ed.), AOCS press.

Aponte M., Blaiotta G., La Croce F., Mazzaglia A., Farina V., Settanni L. and Moschetti G. 2012. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiology 30(1):8-16.

Aponte M., Ventorino V., Blaiotta G., Volpe G., Farina V., Avellone G., Lanza C.M. and Moschetti G. 2010. Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiology 27(1):62-170.

Bevilacqua A., Perricone M., Cannarsi M., Corbo M.R. and Sinigaglia M. 2009. Technological and spoiling characteristics of the yeast microflora isolated from Bella di Cerignola table olives. International Food Science Technology 44(11):2198-2207.

Blekas G., Vassilakis C., Harizanis C., Tsimidou M. and Boskou D.G. 2002. Biophenols in table olives. Journal of Agricultural Food Chemistry 50(13):3688-3692.

Bleve G., Tufariello M., Durante M., Grieco F., Ramires F.A., Mita G., Tasioula-Margari M. and Logrieco A.F. 2015. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamata table olives and developement of a protocol for the pre-selection of fermentation starters. Food Microbiology 46:368-382.

Campus M., Cauli E., Scano E., Piras F., Comunian R., Paba A., Daga E., Di Salvo R., Sedda P., Angioni A. and Zurru R. 2017. Towards controlled fermentation of table olives: lab starter driven process in an automatic pilot processing plant. Food and Bioprocess Technology 10(6):1063-1073.

Caponio F., Pasqualone A., and Gomes T. 2003. Changes in the fatty acid composition of vegetable oils in model doughs submitted to conventional or microwave heating. International Journal of Food Science & Technology, 38: 481-486.

Charoenprasert S. and Mitchell A. 2012. Factors influencing phenolic compounds in table olives (Olea europaea). Journal Agricultural Food Chemistry 60(29):7081-7095.

Corsetti A., Perpetuini G., Schirone M., Tofalo R. and Suzzi G. 2012. Application of starter culture totable olive fermentation: an overview on the experimental studies. Frontiers Microbiology 248:1-6.

D’Antuono I., Garbetta A., Ciasca B., Linsalata V., Minervini F., Lattanzio V.M., Logrieco A.F. and Cardinali A. 2016. Biophenols from table olive cv Bella di Cerignola: chemical characterization, bioaccessibility, and intestinal absorption. Journal of Agricultural and Food Chemistry 64(28):5671-5678.

De Angelis M., Campanella D., Cosmai L., Summo C., Rizzello C.G. and Caponio F. 2015. Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiology 52:18-30.

De Leonardis A. and Macciola V. 2012. Heat-oxidation stability of palm oil blended with extra virgin olive oil. Food Chemistry 135(3):1769-1776.

De Leonardis A., Angelico R., Macciola V. and Ceglie A. 2013. Effects of polyphenol enzymatic-oxidation on the oxidative stability of virgin olive oil. Food Research International 54(2):2001-2007.

De Leonardis A., Macciola V., Cuomo F. and Lopez F. 2015. Evidence of oleuropein degradation by olive leaf protein extract. Food Chemistry 175:568-574.

De Leonardis A., Pizzella L. and Macciola V. 2008. Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils. European Journal of Lipid Science Technology 110(10):941-948.

De Leonardis A., Testa B., Macciola V., Lombardi S.J. and Iorizzo M. 2016. Exploring enzyme and microbial technology for the preparation of green table olives. European Food Research Technology 242(3):363-370.

El Bialy H., Gomaa O.M. and Azab K.S. 2011. Conversion of oil waste to valuable fatty acids using oleaginous yeast. World Journal Microbiology Biotechnology 27(12):2791-2798.

Ercolini D., Villani F., Aponte M. and Mauriello G. 2006. Fluorescence in situ hybridization detection of Lactobacillus plantarum group on olives to be used in natural fermentations. International Journal Food Microbiology 112(3):291-296.

European Union Commission. Commission Regulation (EU) No 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to childrens development and health. Official Journal of European Communities, L. 50, 2012.

European Union Commission. Regulation EEC/2568/91 on the characteristics of olive and olive pomace oils and their analytical methods. Official Journal of European Communities, L. 248, 1991.

Galán-Soldevilla H. and Pérez-Cacho P.R. 2012. Panel training programme for the Protected Designation of Origin “Aceituna Aloreña de Malaga. Grasas y Aceites 63(1):109-117.

Ghanbari R., Anwar F., Alkharfy K.M., Gilani A.H. and Saari N. 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.). International Journal Molecular Sciences 13(3):3291-3340.

Heperkan D. 2013. Microbiota of table olive fermentations and criteria of selection for their use as starters. Frontiers Microbiology 4(143).

Hurtado A., Reguant C., Bordons A. and Rozès N. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiology 27(6):731-740.

International Olive Oil Council (IOOC) 2004. Trade standard applying to table olives COI/OT/NC no. 1, December.

International Olive Oil Council (IOOC) Internet: http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive-figures (accessed April 4, 2017).

Iorizzo M., Lombardi S.J., Macciola V., Testa B., Lustrato G., Lopez F. and De Leonardis A. 2016. Technological potential of Lactobacillus strains isolated from fermented green olives: In vitro studies with emphasis on oleuropein-degrading capability. The Scientific World Journal 2016, 1917592.

Lanza B. and Amoruso F. 2016. Sensory analysis of natural table olives: Relationship between appearance of defect and gustatory-kinaesthetic sensation changes. LWT Food Science Technology 68:365-372.

López A., Cortés A. and Garrido A. 2011. Chemometrics characterization of the fats released during the conditioning processes of table olives. Food Chemistry 26(4):1620-1628.

Malheiro R., Casal S., Sousa A., de Pinho P.G., Peres A.M., Dias L.G., Bento A. and Pereira J.A. 2012. Effect of cultivar on sensory characteristics, chemical composition, and nutritional value of stoned green table olives. Food and Bioprocess Technology 5(5):1733-1742.

Marsilio V., Seghetti L., Iannucci E., Russi F., Lanza B. and Felicioni M. 2005. Use of a lactic acid bacteria starter culture during green olive (Olea europaeaL cv Ascolana tenera) processing. Journal Science Food Agriculture 85(7):1084-1090.

Medina E., Brenes M., Romero C., García A. and de Castro A. 2007. Main antimicrobial compounds in table olives. Journal of Agricultural Food Chemistry 55:9817-9823.

Pasqualone A., Nasti R., Montemurro C. and Gomes T. 2014. Effect of natural-style processing on the oxidative and hydrolytic degradation of the lipid fraction of table olives. Food Control 37:99-103.

Pereira A.P., Pereira J.A., Bento A. and Estevinho M.L. 2008. Microbiological characterization of table olives commercialized in Portugal in respect to safety aspects. Food Chemistry Toxicology 46(8):2895-2902.

Perricone M., Corbo M.R., Sinigaglia M. and Bevilacqua A. 2013. Use of starter cultures in olives: a not-correct use could cause a delay of performances. Food Nutrition Science 4(7):721-726.

Ramírez E., Brenes M., de Castro A., Romero C. and Medina E. 2017a. Oleuropein hydrolysis by lactic acid bacteria in natural green olives. LWT-Food Science Technology 78:165-171.

Ramírez E., Brenes M., García P., Medina E. and Romero C. 2016. Oleuropein hydrolysis in natural green olives: importance of the endogenous enzymes. Food Chemistry 206: 204-209.

Ramírez E., Medina E., García P., Brenes M. and Romero C. 2017b. Optimization of the natural debittering of table olives. LWT-Food Science Technology 77:308-313.

Ratledge C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807-815.

Rozin P., Spranca M., Krieger Z., Neuhaus R., Surillo D., Swerdlin A. and Wood K. 2004. Preference for natural: instrumental and ideational/moral motivations, and the contrast between foods and medicines. Appetite, 43(2):147-154.

Sakouhi F., Harrabi S., Absalon C., Sbei K., Boukhchina S. and Kallel H. 2008. a-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): changes in their composition during ripening and processing. Food Chemistry 108(3):833-839.

Sánchez A.H., García P. and Rejano L. 2006. Trends in table olive production. Elaboration of table olives. Grasas y Aceites 57:86-94.

Servili M., Settanni L., Veneziani G., Esposto S., Massitti O., Taticchi A., Urbani S., Montedoro G.F. and Corsetti A. 2006. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (cv. Itrana and Leccino): a pilot-scale application. Journal Agricultural Food Chemistry 54(11):3869-3875.

Tamer C.E., Incedayi B., Yildiz B. and Çopur Ö.U. 2013. The use of vacuum impregnation for debittering green olives. Food and Bioprocess Technology 6(12):3604-3612.