EFFECTS OF TEMPERATURE ON BIOFILM FORMATION AND QUORUM SENSING OF AEROMONAS HYDROPHILA

Main Article Content

M.F.R. MIZAN
I.K. JAHID
S.Y. PARK
J.L. SILVA
T.J. KIM
J. MYOUNG
S.D. HA

Keywords

Aeromonas hydrophila, temperature, biofilm, quorum sensing, crab surface

Abstract

Aeromonas hydrophila is an emerging foodborne pathogen that causes infections more frequently in summer than in winter. This study evaluated the effects of temperature (4-37°C) on the biofilm formation and quorum sensing abilities of A. hydrophila on microtiter plates, stainless steel (SS), and crab surfaces. The incubation of the bacterium in Luria-Bertani broth at temperatures of 20-25°C significantly (P < 0.05) enhanced the biofilm formation and intra-species quorum sensing ability (via C4-AHL and C6-AHL). Field-emission electron microscopy revealed that the bacterium colonized the surface of crab and formed biofilms at 25°C. Thus, the present study demonstrates that temperature control in food processing environments may reduce A. hydrophila biofilm formation. Therefore, the study has significant applications in food processing plants.
Abstract 780 | pdf Downloads 493

References

Aberoum A. and Jooyandeh H., 2010. A review on occurrence and characterization of the Aeromonasspecies from marine fishes. World J. Fish Mar. Sci. 2:2078e4589.

Almeida F.A., Pimentel?Filho N.J., Pinto U.M., Mantovani H.C., Oliveira L.L. and Vanetti M.C. 2017. Acyl homoserine lactone?based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions. Arch. Microbiol. 199(3):475-486.

Bassler B.L., Wright M., Showalter R.E. and Silverman M.R. 1993. Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9(4):773-786.

Chronicle C. 1997. Salmonellosis (Public Health Concerns for the Farm Family and Staff). (Accessed, 17.12.12). http://news.cornell.edu/stories/1997/12/salmonella-fact-sheet

Chopra A.K., Graf J., Horneman A.J., Johnson J.A. 2009. Virulence factor-activity relationships (VFAR) with specific emphasis on Aeromonasspecies (spp.). J. Water Health. 7:29-54.

Daskalov H. 2006. The importance of Aeromonas hydrophila in food safety. Food Control. 17(6): 474-483.

Deng Y.T., Wu Y.L., Tan A.P., Huang Y.P., Jiang L., XueH.J., Luo W.L. and Zhao F. 2014. Analysis of antimicrobial resistance genes in Aeromonasspp. isolated from cultured freshwater animals in China. Microb. Drug Resist. 20(4):350-356.

Di Bonaventura G., Piccolomini R., Paludi D., D'orio V., Vergara A., Conter M. and Ianieri A. 2008. Influence of temperature on biofilm formation by Listeria monocytogenes on various food?contact surfaces: relationship with motility and cell surface hydrophobicity.J. Appl. Microbiol. 104:1552-1561.

Ewing W.H., Hugh R. and Johnson. J.G. 1961. Studies on the Aeromonas group. NCDC Monogr., National Communicable Disease Center, Atlanta.

Fuqua C., Winans S.C. and Greenberg E.P. (1994). Quorum sensing in bacteria: the luxR/LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176(2):269-275.

Gavriel A.A., Landre J.P. and Lamb J.P. 1998. Incidence of mesophilic Aeromonas within a public drinking water supply in north-east Scotland. J. Appl. Microbiol. 84:383-392.

Giaouris E., Chorianopoulos N. and Nychas G.-J.E. 2005. Effect of temperature, pH, and water activity on biofilm formation by Salmonellaenterica Enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J. Food Prot. 68(10):2149-2154.

Jahan M. and Holley R.A. 2014. Incidence of virulence factors in enterococci from raw and fermented meat and biofilm forming capacity at 25°C and 37°C. Int. J. Food Microbiol. 170:65-69.

Jahid I.K. and Ha S.D. 2014. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms. Foodborne Pathog. Dis. 11(5):346-353.

Jahid I.K., Han N., Srey S. and Ha S.D. 2014. Competitive interactions inside mixed species biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation. Food Res. Int. 55:445-454.

Jahid I.K., Mizan M.F.R, Ha A.J. and Ha S.D. 2015. Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila. Food Microbiol. 49:142-151.

Janda J.M. and Abbott S.L. 2010. The Genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23(1):35-73.

Khajanchi B.K., Sha J., Kozlova E.V., Erova T.E., Suarez G., Sierra J.C., Popov V.L., Horneman A.J. and Chopra A.K. 2009. N-Acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiol. 155:3518-3531.

Kim, S.R., Oh, H.S., Jo, S.J., Yeon, K.M., Lee, C.H., Lim, D.J., Lee, C.H., Lee, J.K. 2013. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: Physical and biological effects. Environ. Sci. Technol. 47:836?842.

Kozlova E.V., Popov V.L., Sha J., Foltz S.M., Erova T.E., Agar S.L., Horneman A.J., Chopra A.K. 2008. Mutation in the Sribosylhomocysteinase (luxS) gene involved in quorum sensing affects biofilm formation and virulence in a clinical isolate of Aeromonas hydrophila. Microb. Pathog. 45(5-6):343–354.

Maalej S., Denis M., Dukan, S. 2004. Temperature and growth-phase effects on Aeromonas hydrophila survival in natural seawater microcosms: role of protein synthesis and nucleic acid content on viable but temporarily nonculturable response. Microbiol. 150:181-187.

Martinez-Medina M., Naves P., Blanco J., Aldeguer X., Blanco J., Blanco M., Ponte C., Soriano F., Darfeuille-Michaud A. and Garcia-Gil L.J. 2009. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol. 9: 202.

Medina-Martínez M.S., Uyttendaele M., Demolder V. and Debevere J. 2006. Effect of temperature and glucose concentration on the N-butanoyl-L-homoserine lactone production by Aeromonashydrophila. Food Microbiol. 23(6):534-540.

Melo L.F. and Bott T.R. 1997. Biofouling in water systems. Exp. Therm. Fluid Sci. 14:375–381.

Mizan M.F.R, Jahid I.K. and Ha S.D. 2015. Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol. 49:41-55.

Mizan M.F.R., Jahid I.K., Kim M.H., Lee, K.H., Kim T.J. andHa S.D. 2016. Variability of biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and distribution of genes involved in biofilm formation. Biofouling. 32(4):497-509.

Mizan M.F.R., Ashrafodoulla M., Sadekuzzaman M., Kang I. and Ha S.D. 2017. Effects of NaCl, glucose, and their combinations on biofilm formation on black tiger shrimp (Penaeus monodon) surfaces by Vibrio parahaemolyticus. Food Control 89:203-209.

Murray P.R., Baron, E.J., Jorgensen, J.H., Pfaller, M.A. and Yolken R.H. (ed.). 2003. Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.

Noori H., Mizan M.F.R., Jahid I.K. and Ha S.D. 2016. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control. 70:161-166.

Norhana M.N.W., Poole S.E., Deeth H.C. and Dykes G.A. 2010. The effects of temperature, chlorine and acids on the survival of Listeria and Salmonella strains associated with uncooked shrimp carapace and cooked shrimp flesh. Food Microbiol. 27:250-256.

O’Toole G.A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 30, pii: 2437.

Ottaviani D., Parlani C., Citterio B., Masini L., Leoni F., Canonico C., Sabatini L., Bruscolini F. and Pianetti A. 2011. Putative virulence properties of Aeromonas strains isolated from food, environmental and clinical sources in Italy: A comparative study. International Journal of Food Microbiol. 144(3):538-545.

Ponce-Rossi, A.D.R., Pinto, U.M., Ribon, A.D.O.B., Bazzolli, D.M.S., and Vanetti and M.C.D. 2016. Quorum sensing regulated phenotypes in Aeromonas hydrophila ATCC7966 deficient in AHL production. Ann. Microbiol. 66:1117-1126.

Rachid S., Ohlsen K., Witte W., Hacker J. and Ziebuhr W. 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44(12):3357-3363.

Rahman M.H., Suzuki S. and Kawai K. 2001. The effect of temperature on Aeromonas hydrophila infection in goldfish, Carassius auratus. J. Appl. Ichthyol. 17:282-285.

Rao T.S. 2010. Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquat. Ecol. 44(2):463-478.

Shen C., Luo Y., Nou X., Bauchan G., Zhou B., Wang Q., and Millner P. 2012. Enhanced inactivation of Salmonella and Pseudomonas biofilms on stainless steel by use of T-128, a fresh-produce washing aid, in chlorinated wash solutions. Appl. Environ. Microbiol. 78(19):6789-6798.

Skandamis P.N. and Nychas G.J. 2012. Quorum sensing in the context of food microbiology. Appl. Environ. Microbiol. 78:5473–5482.

Soni K.A., Jesudhasan P.R., Cepeda M., Williams B., Hume M., Russell W.K., Jayaraman A. and Pillai S.D. 2008. Autoinducer AI-2 is involved in regulating a variety of cellular processes in Salmonella Typhimurium. Foodborne Pathog. Dis. 5:147-153.

Swift S., Karlyshev A.V., Fish L., Durant E.L., Winson M.K., Chhabra S.R., Williams P., Macintyre S. and Stewart G.S. 1997. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate Nacylhomoserine lactone signal molecules. J. Bacteriol. 179(17):5271-5281.

Takahashi H., Miya S., Igarashi K., Suda T., Kuramoto S. and Kimura, B.2009. Biofilm formation ability of Listeria monocytogenes isolates from raw ready-to-eat seafood. J. Food Prot. 72:1476-1480.

Teh K.H., Flint S. and French N. 2010. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Int. J. Food Microbiol. 143(3):118-124.