Pea protein isolates: emulsification properties as affected by preliminary pretreatments
Main Article Content
Keywords
emulsion stability, pea protein, plant proteins, oil-in-water emulsions, technological properties
Abstract
The surface and emulsifying properties of a commercial pea protein isolate in oil-in-water model emulsions and the role of insoluble residues in emulsion stability were investigated. Droplet size distribution, flocculation index, microstructure, and protein coverage of the emulsions were evaluated. The insoluble fraction positively contributed to the pea proteins’ emulsifying properties, allowing the formation of emulsions with higher dispersion degree, especially at low isolate concentration, with an enhancement of the physical stability.
References
Amine, C., Dreher, J., Helgason, T. and Tadros, T., 2014. Investigation of emulsifying properties and emulsion stability of plant and milk proteins using interfacial tension and interfacial elasticity. Food Hydrocolloids 39: 180–186. 10.1016/j.foodhyd.2014.01.001
Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z. and Čabrilo, S.B., 2015. Techno-functional properties of pea (Pisum sativum) protein isolates–a review. Acta Periodica Technologica 46: 1–18. 10.2298/APT1546001B
Boye, J.I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E. and Rajamohamed, S.H., 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43(2): 537–546. 10.1016/j.foodres.2009.07.021
Burger, T.G. and Zhang, Y., 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology 86: 25–33. 10.1016/j.tifs.2019.02.007
D’Alessio, G., Flamminii, F., Faieta, M., Pittia, P. and Carla Daniela, D.M., 2022. Proteine di pisello: tecnologie di produzione simili, ma funzionalità tecnologiche differenti. Industrie Alimentari 61(635): 7–24. .
de Angelis, D., Kaleda, A., Pasqualone, A., Vaikma, H., Tamm, M., Tammik, M.L., Squeo, G. and Summo, C., 2020. Physicochemical and sensorial evaluation of meat analogues produced from dry-fractionated pea and oat proteins. Foods 9(12): 1754. 10.3390/foods9121754
Karaca, A.C., Low, N. and Nickerson, M., 2011. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International 44(9): 2742–2750. 10.1016/j.foodres.2011.06.012
Kimura, A., Takako, F., Meili, Z., Shiori, M., Maruyama, N. and Utsumi, S., 2008. Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean-French bean 7S globulin exhibits excellent properties. Journal of Agricultural and Food Chemistry 56(21): 10273–10279. 10.1021/jf801721b
Liang, H.N. and Tang, C.H., 2013. PH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids 33(2): 309–319. 10.1016/j.foodhyd.2013.04.005
Lu, Z.X., He, J.F., Zhang, Y.C. and Bing, D.J., 2020. Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition 60: 2593–2605. 10.1080/10408398.2019.1651248
McClements, D.J., 2004. Food emulsions: principles, practices, and techniques. Second Edition. CRC Press. 10.1201/9781420039436
Peng, W., Kong, X., Chen, Y., Zhang, C., Yang, Y. and Hua, Y., 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52: 301–310. 10.1016/j.foodhyd.2015.06.025
Pirozzi, A., Capuano, R., Avolio, R., Gentile, G., Ferrari, G. and Donsì, F., 2021. O/W pickering emulsions stabilized with cellulose nanofibrils produced through different mechanical treatments. Foods 10(8): 1886. 10.3390/foods10081886
Ren, Z., Chen, Z., Zhang, Y., Lin, X. and Li, B., 2019. Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues. Food Hydrocolloids 96: 322–330. 10.1016/j.foodhyd.2019.05.015
Schröder, A., Laguerre, M., Tenon, M., Schroën, K. and Berton-Carabin, C.C., 2021. Natural particles can armor emulsions against lipid oxidation and coalescence. Food Chemistry 347: 129003. 10.1016/J.FOODCHEM.2021.129003
Shao, Y. and Tang, C.H., 2014. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: influence of ionic strength and heat pretreatment. Food Hydrocolloids 37: 149–158. 10.1016/j.foodhyd.2013.10.030
Skelhon, T.S., Grossiord, N., Morgan, A.R. and Bon, S.A.F., 2012. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary. Journal of Materials Chemistry 22(36): 19289–19295. 10.1039/c2jm34233b
Sun, Z., Yan, X., Xiao, Y., Hu, L., Eggersdorfer, M., Chen, D., Yang, Z. and Weitz, D.A., 2022. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology 64: 153–163. 10.1016/j.partic.2021.06.004
Tanger, C., Engel, J. and Kulozik, U., 2020. Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids 107: 105949. 10.1016/j.foodhyd.2020.105949
Tömösközi, S., Lµsztity, R., Haraszi, R. and Baticz, O., 2001. Isolation and study of the functional properties of pea proteins. Nahrung/Food 45(6): 399–401. 10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0
Tulbek, M.C., Lam, R.S.H., Wang, Y.C., Asavajaru, P. and Lam, A., 2016. Pea: a sustainable vegetable protein crop. In: Sustainable protein sources. Elsevier Inc, Academic Press: Cambridge, MA, USA, pp. 145–164. 10.1016/B978-0-12-802778-3.00009-3
Zhu, H.G., Tang, H.Q., Cheng, Y.Q., Li, Z.G. and Tong, L.T., 2021. Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT 148: 111702. 10.1016/j.lwt.2021.111702
Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z. and Čabrilo, S.B., 2015. Techno-functional properties of pea (Pisum sativum) protein isolates–a review. Acta Periodica Technologica 46: 1–18. 10.2298/APT1546001B
Boye, J.I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E. and Rajamohamed, S.H., 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43(2): 537–546. 10.1016/j.foodres.2009.07.021
Burger, T.G. and Zhang, Y., 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science and Technology 86: 25–33. 10.1016/j.tifs.2019.02.007
D’Alessio, G., Flamminii, F., Faieta, M., Pittia, P. and Carla Daniela, D.M., 2022. Proteine di pisello: tecnologie di produzione simili, ma funzionalità tecnologiche differenti. Industrie Alimentari 61(635): 7–24. .
de Angelis, D., Kaleda, A., Pasqualone, A., Vaikma, H., Tamm, M., Tammik, M.L., Squeo, G. and Summo, C., 2020. Physicochemical and sensorial evaluation of meat analogues produced from dry-fractionated pea and oat proteins. Foods 9(12): 1754. 10.3390/foods9121754
Karaca, A.C., Low, N. and Nickerson, M., 2011. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International 44(9): 2742–2750. 10.1016/j.foodres.2011.06.012
Kimura, A., Takako, F., Meili, Z., Shiori, M., Maruyama, N. and Utsumi, S., 2008. Comparison of physicochemical properties of 7S and 11S globulins from pea, fava bean, cowpea, and French bean with those of soybean-French bean 7S globulin exhibits excellent properties. Journal of Agricultural and Food Chemistry 56(21): 10273–10279. 10.1021/jf801721b
Liang, H.N. and Tang, C.H., 2013. PH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids 33(2): 309–319. 10.1016/j.foodhyd.2013.04.005
Lu, Z.X., He, J.F., Zhang, Y.C. and Bing, D.J., 2020. Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition 60: 2593–2605. 10.1080/10408398.2019.1651248
McClements, D.J., 2004. Food emulsions: principles, practices, and techniques. Second Edition. CRC Press. 10.1201/9781420039436
Peng, W., Kong, X., Chen, Y., Zhang, C., Yang, Y. and Hua, Y., 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52: 301–310. 10.1016/j.foodhyd.2015.06.025
Pirozzi, A., Capuano, R., Avolio, R., Gentile, G., Ferrari, G. and Donsì, F., 2021. O/W pickering emulsions stabilized with cellulose nanofibrils produced through different mechanical treatments. Foods 10(8): 1886. 10.3390/foods10081886
Ren, Z., Chen, Z., Zhang, Y., Lin, X. and Li, B., 2019. Novel food-grade Pickering emulsions stabilized by tea water-insoluble protein nanoparticles from tea residues. Food Hydrocolloids 96: 322–330. 10.1016/j.foodhyd.2019.05.015
Schröder, A., Laguerre, M., Tenon, M., Schroën, K. and Berton-Carabin, C.C., 2021. Natural particles can armor emulsions against lipid oxidation and coalescence. Food Chemistry 347: 129003. 10.1016/J.FOODCHEM.2021.129003
Shao, Y. and Tang, C.H., 2014. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: influence of ionic strength and heat pretreatment. Food Hydrocolloids 37: 149–158. 10.1016/j.foodhyd.2013.10.030
Skelhon, T.S., Grossiord, N., Morgan, A.R. and Bon, S.A.F., 2012. Quiescent water-in-oil Pickering emulsions as a route toward healthier fruit juice infused chocolate confectionary. Journal of Materials Chemistry 22(36): 19289–19295. 10.1039/c2jm34233b
Sun, Z., Yan, X., Xiao, Y., Hu, L., Eggersdorfer, M., Chen, D., Yang, Z. and Weitz, D.A., 2022. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology 64: 153–163. 10.1016/j.partic.2021.06.004
Tanger, C., Engel, J. and Kulozik, U., 2020. Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloids 107: 105949. 10.1016/j.foodhyd.2020.105949
Tömösközi, S., Lµsztity, R., Haraszi, R. and Baticz, O., 2001. Isolation and study of the functional properties of pea proteins. Nahrung/Food 45(6): 399–401. 10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0
Tulbek, M.C., Lam, R.S.H., Wang, Y.C., Asavajaru, P. and Lam, A., 2016. Pea: a sustainable vegetable protein crop. In: Sustainable protein sources. Elsevier Inc, Academic Press: Cambridge, MA, USA, pp. 145–164. 10.1016/B978-0-12-802778-3.00009-3
Zhu, H.G., Tang, H.Q., Cheng, Y.Q., Li, Z.G. and Tong, L.T., 2021. Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT 148: 111702. 10.1016/j.lwt.2021.111702

