Effect of high-moisture extrusion on soy meat analog: study on its morphological and physiochemical properties

Main Article Content

Monirul Islam
Yatao Huang
Md. Serajul Islam
Ningyu Lei
Lei Shan
Bei Fan
Litao Tong
Fengzhong Wang

Keywords

soy meat analog, high-moisture extrusion, allergenic protein, anti-nutritional factors, textural properties

Abstract

There has been a growing interest in meat analog, microstructure characteristics, and anti-nutritional content obtained from soybean. High-moisture extrusion parameters are the input extruder of moisture content (>40%) that get the advantages of lower energy input. Thermo-mechanical treatment has a considerable influence on structural properties of soy-based meat analog. Texturized soy proteins can substitute meat products while providing a high-protein food ingredient which can be consumed directly as meat analogs. Therefore, this review aims to the effect on soybean of micro-structural and physicochemical properties of meat analogs by high-moisture extrusion. Thus, further studies are required concerning a large-scale meat products with purify protein structure.

Abstract 449 | PDF Downloads 146 HTML Downloads 416 XML Downloads 80

References

Aijie L., Shouwei Y. and Li L. 2014. Structure, trypsin inhibitor activity and functional properties of germinated soybean protein isolate. Int J Food Sci Technol. 49(3): 911–919. 10.1111/ijfs.12386

Aiking H. 2011. Future protein supply. Trends Food Sci Technol. 22(2–3): 112–120. 10.1016/j.tifs.2010.04.005

Aiking H., de Boer J. and Vereijken J. 2006. Sustainable protein production and consumption: pigs or peas? Vol. 45. Springer Science & Business Media, Springer, Dordrecht, The Netherlands.

Akdogan H. 1999. High moisture food extrusion. Int J Food Sci Technol. 34(3): 195–207. 10.1046/j.1365-2621.1999.00256.x

Alexandratos N. and Bruinsma, J. 2012. World agriculture towards 2030/2050: the 2012 revision, Position Paper. AgEcon Search. St. Paul, MN, USA. 10.22004/ag.econ.288998

Aschemann-Witzel J., Gantriis R.F., Fraga P. and Perez-Cueto F.J. 2021. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. Crit Rev Food Sci Nutr. 61(18): 3119–3128. 10.1080/10408398.2020.1793730

Asgar M., Fazilah A., Huda N., Bhat R. and Karim, A. 2010. Nonmeat protein alternatives as meat extenders and meat analogs. Comprehen Rev Food Sci Food Saf. 9(5): 513–529. 10.1111/j.1541-4337.2010.00124.x

Barzegar F., Kamankesh M. and Mohammadi A. 2019. Heterocyclic aromatic amines in cooked food: a review on formation, health risk-toxicology and their analytical techniques. Food Chem. 280: 240–254. 10.1016/j.foodchem.2018

Beardslee T.A. 2000. IgE epitope mapping of soybean glycinin G1 acidic chain. The University of Nebraska, Lincoln. 9976975.

Beck S.M., Knoerzer K., Foerster M., Mayo S., Philipp C. and Arcot J. 2018. Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. J Food Eng. 231: 61–71. 10.1016/j.jfoodeng.2018.03.004

Berghout J., Pelgrom P., Schutyser M., Boom R. and Van Der Goot A. 2015. Sustainability assessment of oilseed fractionation processes: a case study on lupin seeds. J Food Eng. 150: 117–124. 10.1016/j.jfoodeng.2014.11.005

Bryant C. and Barnett, J. 2018. Consumer acceptance of cultured meat: a systematic review. Meat Sci. 143: 8–17. 10.1016/j.meatsci.2018.04.008

Caillard R., Remondetto G. and Subirade M. 2010. Rheological investigation of soy protein hydrogels induced by Maillard-type reaction. Food Hydrocolloids. 24(1): 81–87. 10.1016/j.foodhyd.2009.08.009

Cheftel J., Kitagawa M. and Queguiner C. 1992. New protein texturization processes by extrusion cooking at high moisture levels. Food Rev Int. 8(2): 235–275. 10.1080/87559129209540940

Chen F.L., Wei Y.M. and Zhang B. 2011. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content. LWT Food Sci Technol. 44(4): 957–962. 10.1016/j.lwt.2010.12.008

Chen F.L., Wei Y.M., Zhang B. and Ojokoh, A.O. 2010. System parameters and product properties response of soybean protein extruded at wide moisture range. J Food Eng. 96(2): 208–213. 10.1016/j.jfoodeng.2009.07.014

Choct M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling Int. 191(June issue): 13–26.

Day L. and Swanson B.G. 2013. Functionality of protein-fortified extrudates. Comprehen Rev Food Sci Food Saf. 12(5): 546–564. 10.1111/1541-4337.12023

Debruyne I. 2006. Soy base extract: soymilk and dairy alternatives. In: Riaz, M.N., editor. Soy applications in food. CRC Press Inc, Boca Raton, USA, pp. 111–133. 10.1201/9781420037951.ch7

Dekkers B.L., Boom R.M. and van der Goot, A.J. 2018. Structuring processes for meat analogues. Trends Food Sci Technol. 81: 25–36. 10.1016/j.tifs.2018.08.011

Dixit A.K., Antony J., Sharma N.K. and Tiwari R. K. 2011. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry, 367–383.

Echeverria-Jaramillo E., Kim Y.-H., Nam Y.-R., Zheng Y.-F., Cho J.Y., Hong W. S., et al. 2021. Revalorization of the cooking water (Aquafaba) from soybean varieties generated as a by-product of food manufacturing in Korea. Foods. 10(10): 2287. 10.3390/foods10102287

Elzerman J.E., Van Boekel M.A. and Luning P.A. 2013. Exploring meat substitutes: consumer experiences and contextual factors. Br Food J. 115(5): 700–710. 10.1108/00070701311331490

Fang Y., Zhang B. and Wei Y. 2014. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. J Food Eng. 121: 32–38. 10.1016/j.jfoodeng.2013.08.002

Fiala N. 2008. Meeting the demand: an estimation of potential future greenhouse gas emissions from meat production. Ecol Econ. 67(3): 412–419. 10.1016/j.ecolecon.2007.12.021

Finnigan T.J., Wall B.T., Wilde P.J., Stephens F.B., Taylor S.L. and Freedman M.R. 2019. Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Curr Dev Nutr. 3(6): nzz021. 10.1093/cdn/nzz021

Fiorentini M., Kinchla A.J. and Nolden A.A. 2020. Role of sensory evaluation in consumer acceptance of plant-based eat analogs and meat extenders: a scoping review. Foods. 9(9): 1334. 10.3390/foods9091334

Francis G., Makkar H.P. and Becker K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 199(3–4): 197–227. 10.1016/S0044-8486(01)00526-9

Gagnon C., Poysa V., Cober E.R. and Gleddie S. 2010. Soybean allergens affecting North American patients identified by 2D gels and mass spectrometry. Food Anal Methods. 3(4): 363–374. 10.1007/s12161-009-9090-3

Golbitz P. and Jordan J. 2006. Soyfoods: market and products. In: Riaz, M.N., editor. Soy applications in food. CRC Press Inc, Boca Raton, USA, pp. 1–21.

Gu B.Y. and Ryu G.-H. 2017. Effects of moisture content and screw speed on physical properties of extruded soy protein isolate. J Korean Soc Food Sci Nutr. 46(6): 751–758. 10.3746/jkfn.2017.46.6.751

Guo J., Yang X.-Q., He X.-T., Wu N.-N., Wang J.-M., Gu W., et al. 2012. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0. J Agr Food Chem. 60(14): 3782–3791. 10.1021/jf300409y

Guo X., Sun X., Zhang Y., Wang R. and Yan X. 2018. Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough. Food Chem. 245: 500–507. 10.1016/j.foodchem.2017.10.126

He L.-D., Guo X.-N. and Zhu K.-X. 2019. Effect of soybean milk addition on the quality of frozen-cooked noodles. Food Hydrocolloids. 87: 187–193. 10.1016/j.foodhyd.2018.07.048

John K.M., Khan F., Luthria D.L., Garrett W. and Natarajan S. 2017. Proteomic analysis of anti-nutritional factors (ANF’s) in soybean seeds as affected by environmental and genetic factors. Food Chem. 218: 321–329. 10.1016/j.foodchem.2016.09.072

Jooyandeh H. 2011. Soy products as healthy and functional foods. Middle-East J Sci Res. 7(1): 71–80.

Joshi V. and Kumar S. 2015. Meat analogues: plant based alternatives to meat products–a review. Int J Food Ferment Technol. 5(2): 107–119. 10.5958/2277-9396.2016.00001.5

Kader M.A., Senge M, Mojid M.A. and Nakamura K. 2017. Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. Int Soil Water Conserv Res. 5(4): 302–308. 10.1016/j.iswcr.2017.08.001

Kumar P., Chatli M., Mehta N., Singh P., Malav O. and Verma A.K. 2017. Meat analogues: health promising sustainable meat substitutes. Crit Rev Food Sci Nutr. 57(5): 923–932. 10.1080/10408398.2014.939739

Kyriakopoulou K., Dekkers B. and van der Goot A.J. 2019. Plant-based meat analogues. In: Sustainable meat production and processing. Wageningen University & Research. Wageningen, The Netherlands, pp. 103–126. 10.1016/B978-0-12-814874-7.00006-7

Lakemond C.M., de Jongh H.H., Hessing M., Gruppen H. and Voragen A.G. 2000. Heat denaturation of soy glycinin: influence of pH and ionic strength on molecular structure. J Agr Food Chem. 48(6): 1991–1995. 10.1021/jf9908704

Lin S., Huff H. and Hsieh F. 2000. Texture and chemical characteristics of soy protein meat analog extruded at high moisture. J Food Sci. 65(2): 264–269. 10.1111/j.1365-2621.2000.tb15991.x

MacDonald R.S., Pryzbyszewski J. and Hsieh F.-H. 2009. Soy protein isolate extruded with high moisture retains high nutritional quality. J Agr Food Chem. 57(9): 3550–3555. 10.1021/jf803435x

Malav O., Talukder S., Gokulakrishnan P. and Chand S. 2015. Meat analog: a review. Crit Rev Food Sci Nutr. 55(9): 1241–1245. 10.1080/10408398.2012.689381

Ma M., Zhang H., Xie Y., Yang M., Tang J., Wang P., et al. 2020. Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. LWT. 118: 108709. 10.1016/j.lwt.2019.108709

Mittermeier-Kleßinger V.K., Hofmann T. and Dawid C. 2021. Mitigating off-flavors of plant-based proteins. J Agr Food Chem. 69(32): 9202–9207. 10.1021/acs.jafc.1c03398

Olaofe O., Adeyemi F. and Adediran G.O. 1994. Amino acid and mineral compositions and functional properties of some oilseeds. J Agr Food Chem. 42(4): 878–881. 10.1021/jf00040a007

Orcutt M., Mcmindes M., Chu H., Mueller I., Bater B. and Orcutt A. 2006. Textured soy protein utilization in meat and meat analog products. In: Riaz, M.N., editor. Soy applications in food. CRC Press Inc, Boca Raton, USA, pp. 155–184.

Osen R., Toelstede S., Wild F., Eisner P. and Schweiggert-Weisz U. 2014. High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J Food Eng. 127: 67–74. 10.1016/j.jfoodeng.2013.11.023

Palanisamy M., Franke K., Berger R.G., Heinz V. and Töpfl S. 2019. High moisture extrusion of lupin protein: influence of extrusion parameters on extruder responses and product properties. J Sci Food Agr. 99(5): 2175–2185. 10.1002/jsfa.9410

Palanisamy M., Töpfl S., Aganovic K. and Berger R.G. 2018. Influence of iota carrageenan addition on the properties of soy protein meat analogues. LWT. 87: 546–552. 10.1016/j.lwt.2017.09.029

Paul A.A., Kumar S., Kumar V. and Sharma R. 2019. Milk analog: plant based alternatives to conventional milk, production, potential and health concerns. Crit Rev Food Sci Nutr. 60(18): 3005–3023. 10.1080/10408398.2019.1674243

Peluso I., Romanelli L. and Palmery M. 2014. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention? Int J Food Sci Nutr. 65(3): 259–267. 10.3109/09637486.2014.880670

Peng X., Ren C. and Guo S. 2016. Particle formation and gelation of soymilk: effect of heat. Trends Food Sci Technol. 54: 138–147. 10.1016/j.tifs.2016.06.005

Pietsch V.L., Emin M.A. and Schuchmann H.P. 2017. Process conditions influencing wheat gluten polymerization during high moisture extrusion of meat analog products. J Food Eng. 198: 28–35. 10.1016/j.jfoodeng.2016.10.027

Post M.J. 2012. Cultured meat from stem cells: challenges and prospects. Meat Sci. 92(3): 297–301. 10.1016/j.meatsci.2012.04.008

Preece K.E., Hooshyar N., Krijgsman A., Fryer P.J. and Zuidam N.J. 2017. Intensified soy protein extraction by ultrasound. Chem Eng Process Process Inten. 113: 94–101. 10.1016/j.cep.2016.09.003

Riascos J.J., Weissinger A.K., Weissinger S.M. and Burks A.W. 2010. Hypoallergenic legume crops and food allergy: factors affecting feasibility and risk. J Agr Food Chem. 58(1): 20–27. 10.1021/jf902526y

Riaz M. 2004. Texturized soy protein as an ingredient. In: Riaz, M.N., editor. Proteins in food processing. pp. 517–558.

Ritala A., Häkkinen S.T., Toivari M. and Wiebe M. G. 2017. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol. 82009. 10.3389/fmicb.2017.02009

Sadler M.J. 2004. Meat alternatives—market developments and health benefits. Trends Food Sci Technol. 15(5): 250–260. 10.1016/j.tifs.2003.09.003

Salgado J.M. and Donado-Pestana C.M. 2011. Soy as a functional food. In: El-Shemy H., editor. Soybean and nutrition. IntechOpen. London, UK, pp. 21–44.

Samard S., Gu B.Y. and Ryu G.H. 2019. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. J Sci Food Agric. 99(11): 4922–4931. 10.1002/jsfa.9722

Scheiber M.D., Liu J.H., Subbiah M., Rebar R.W. and Setchell K.D. 2001. Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women. Menopause. 8(5): 384–392. 10.1097/00042192-200109000-00015

Sha L. and Xiong Y.L. 2020. Plant protein-based alternatives of reconstructed meat: science, technology, and challenges. Trends Food Sci Technol. 102: 51–61. 10.1016/j.tifs.2020.05.022

Shahiri Tabarestani H. and Mazaheri Tehrani M. 2014. Optimization of physicochemical properties of low-fat hamburger formulation using blend of soy flour, split-pea flour and wheat starch as part of fat replacer system. J Food Process Preserv. 38(1): 278–288. 10.1111/j.1745-4549.2012.00774.x

Sharma S., Thind S.S. and Kaur A. 2015. In vitro meat production system: why and how? J Food Sci Technol. 52(12): 7599–7607. 10.1007/s13197-015-1972-3

Shen S.H., Shi X.D. and Yuan Y.C. 2012. Optimal design of conjugate cam-linkage combined mechanism for pressure device in die-cutting. Paper presented at the Applied Mechanics and Materials. 120: 178–181. 10.4028/www.scientific.net/AMM.120.178

Shih M.-C., Hwang T.-S. and Chou, H.-Y. 2016. Physicochemical and functional property changes in soy protein isolates stored under high relative humidity and temperature. J Food Sci Technol. 53(1): 902–908. 10.1007/s13197-015-2057-z

Simmons A.L., Smith K.B. and Vodovotz Y. 2012. Soy ingredients stabilize bread dough during frozen storage. J Cereal Sci. 56(2): 232–238. 10.1016/j.jcs.2012.05.007

Singh, G. 2010. The soybean: botany, production and uses. CABI. Cambridge, MA, USA.

Singh P., Kumar R., Sabapathy S. and Bawa A. 2008. Functional and edible uses of soy protein products. Comprehen Rev Food Sci Food Saf. 7(1): 14–28. 10.1111/j.1541-4337.2007.00025.x

Singha, P. and Muthukumarappan K. 2017. Effects of processing conditions on the system parameters during single screw extrusion of blend containing apple pomace. J Food Process Eng. 40(4): e12513. 10.1111/jfpe.12513

Smetana S., Mathys A., Knoch A. and Heinz, V. 2015. Meat alternatives: life cycle assessment of most known meat substitutes. Int J Life Cycle Assess. 20(9): 1254–1267. 10.1007/s11367-015-0931-6

Smith G., Marshall W., Carpenter Z., Branson R. and Mnnke, W. 1976. Textured soy proteins for use in blended ground beef patties. J Food Sci. 41(5): 1148–1152. 10.1111/j.1365-2621.1976.tb14405.x

Thadavathi Y.L., Wassén S. and Kádár R. 2019. In-line rheological and microstroctural characterization of high moisture content protein vegetable mixtures in single screw extrusion. J Food Eng. 245: 112–123. 10.1016/j.jfoodeng.2018.10.006

Uguz A., Lack G., Pumphrey R., Ewan P., Warner J., Dick J., et al.. 2005. Allergic reactions in the community: a questionnaire survey of members of the anaphylaxis campaign. Clin Exp Allergy. 35(6): 746–750. 10.1111/j.1365-2222.2005.02257.x

van der Weele C., Feindt P., van der Goot A.J., van Mierlo B. and van Boekel, M. 2019. Meat alternatives: an integrative comparison. Trends Food Sci Technol. 88: 505–512. 10.1016/j.tifs.2019.04.018

Wang F., Meng J., Sun L., Weng Z., Fang Y., Tang X., et al. 2020. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing. LWT. 117: 108441. 10.1016/j.lwt.2019.108441

Wang T., Qin G.-X., Sun Z.-W. and Zhao Y. 2014. Advances of research on glycinin and β-conglycinin: a review of two major soybean allergenic proteins. Crit Rev Food Sci Nutr. 54(7): 850–862. 10.1080/10408398.2011.613534

Wolz M., Kastenhuber S. and Kulozik U. 2016. High moisture extrusion for microparticulation of whey proteins–influence of process parameters. J Food Eng. 185: 56–61. 10.1016/j.jfoodeng.2016.04.002

Wu M., Huang X., Gao F., Sun Y., Duan H. and Li, D. 2019. Dynamic mechanical properties and fractal analysis of texturized soybean protein/wheat gluten composite produced by high moisture extrusion. Int J Food Sci Technol. 54(2): 499–508. 10.1111/ijfs.13963

Zahari I., Ferawati F., Helstad A., Ahlström C., Östbring K., Rayner M., et al. 2020. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods. 9(6): 772. 10.3390/foods9060772

Zhang J., Liu L., Jiang Y., Faisal S. and Wang Q. 2020. A new insight into the high-moisture extrusion process of peanut protein: from the aspect of the orders and amount of energy input. J Food Eng. 264: 109668. 10.1016/j.jfoodeng.2019.07.015

Zhang J., Liu L., Jiang Y., Shah F., Xu Y. and Wang Q. 2020. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids. 99: 105311. 10.1016/j.foodhyd.2019.105311

Zhang J., Liu L., Liu H., Yoon A., Rizvi S.S. and Wang Q. 2019. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit Rev Food Sci Nutr. 59(20): 3267–3280. 10.1080/10408398.2018.1487383