A CONTINUOUS STUDY ON QUALITATIVE ASSESSMENT OF REHYDRATED 'ANNURCA' APPLE: INFLUENCE OF PROCESS CONDITIONS AND DRYING PRE-TREATMENT

Main Article Content

B. ÖNAL
G. ADILETTA
M. SODO
M. DI MATTEO
P. RUSSO

Keywords

‘Annurca’apple, pre-treatment, rehydration, drying, PCA

Abstract

In a previous paper the effect of chemical pre-treatment on quality attributes of ‘Annurca’ apple slabs dried at different temperatures was investigated. Herein, we evaluated the effect of the same pre-treatment on the quality attributes of the same dried ‘Annurca’ apple samples rehydrated at two temperatures. Specifically, slabs were initially pre-treated in a dipping solution containing trehalose, sodium chloride, sucrose. Then, they were dried by using a convective dryer at 50°, 55°, 60°, and 65°C, and rehydrated at 30° and 70°C by immersion in water. The combination of pre-treatment, drying at 65°C and rehydration temperature of 30°C enabled to obtain the best preservation of rehydration indices (i.e, water absorption capacity), structure and colour properties. On the contrary, the highest antioxidant activity (EC50) in treated samples was found at the lowest drying temperatures (50° and 55°C) among those investigated and rehydration temperature of 30°C. The PCA provided different behaviours among untreated and treated dried apples when rehydrated at 30° and 70°C, demonstrating that this pre-treatment combined with drying/rehydration temperatures influenced the quality attributes of rehydrated samples.
Abstract 137 | pdf Downloads 99

References

Adiletta G., Wijerathne C., Senadeera W., Russo P., Crescitelli A. and Di Matteo M. 2018. Dehydration and rehydration characteristics of pretreated pumpkin slices. Italian J. Food Sci. 30(4):684-706. DOI: doi.org/10.14674/IJFS-1176

Adiletta G., Russo P., Senadeera W. and Di Matteo M. 2016a. Drying characteristics and quality of grape under physical pretreatment. J. Food Eng. 172:9-18. DOI: doi.org/10.1016/j.jfoodeng.2015.06.031

Adiletta G., Russo P., Crescitelli A. and Di Matteo M. 2016b. Combined pretreatment for enhancing quality of dried and rehydrated eggplant. Food Bioprocess Technol. 9(11):1912-1923. DOI: doi.org/10.1007/s11947-016-1778-y

Adiletta G., Alam M.R., Cinquanta L., Russo P., Albanese D. and Di Matteo, M. 2015. Effect of abrasive pretreatment on hot dried goji berry. Chem. Eng. Trans. 44:127-132. DOI: doi.org/10.3303/CET1544022

Aktas T., Fujii S., Kawano Y. and Yamamamoto S. 2007. Effects of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products. FoodBioprod. Process 85(3):178-183.
DOI: doi.org/10.1205/fbp07037

Amin I., Norazaidah Y. and Emmy Hainida K.I. 2006. Antioxidant activity and phenolic content of raw and boiled, Amaranthus species. Food Chem. 94:47-52. DOI: doi:10.1016/j.foodchem.2004.10.048

Aral S., Me?e A.V. 2016. Convective drying of hawtorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 210:577-584. DOI: doi.org/10.1016/j.foodchem.2016.04.128

Atarés L., Chiralt A. and González-Martínez C. 2008. Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). J. Food Eng. 89, 49-56. DOI: doi:10.1016/j.jfoodeng.2008.04.002

Baeghbali R., Niakousari M., Ngadi M.O. and Eskandari M.H.2019. Combined ultrasound and infrared assisted conductive hydro-drying of apple slices. Dry Technol. 37(14):1793-1805. DOI: doi.org/10.1080/07373937.2018.1539745

Barrera C., Betaret N. and Betaret P.F. 2016. Calcium and temperature effect on structural damage of hot air dried apple slices: Nonlinear irreversible thermodynamic approach. J. Food Eng. 189:106-44. DOI: doi.org/10.106/j.jfoodeng.2016.05.24

Benseddik A., Azzi A., Zidoune M.N., Khanniche R. and Besembes C. 2019. Empirical and diffusion models of rehydration process of differently dried pumpkin slices. J. Saudi Soc. Agric. Sci. 18:401-410.DOI: doi.org/10.1016/j.jssas.2018.01.003

Betoret E., Betoret N., Castagnini J.M., Rocculi P., Dalla Rosa M. and Fita P. 2015. Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurring during air drying of vacuum impregnated apple (cv. Granny Smith): calcium and trehalose effects. J. Food Eng. 147:95-101. DOI: doi.org/10.1016/j.jfoodeng.2014.09.028

Bilboa-Sáinz C., Andrés A. and Fito, P. 2005. Hydration kinetics of dried apple as affected by drying kinetics. J. Food Eng. 68:369-376. DOI: doi.org/10.1016/j.jfoodeng.2004.06.012

Brand-Williams W., Cuvelier M.E. and Berset C.L.W. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 28(1):25-30.DOI: doi.org/10.1016/S0023-6438(95)80008-5

Colaço C.A.L.S. and Roser B. 1994. Trehalose- a multifunctional additive for food preservation. Food Packing. Preserv. 123-140. DOI: doi.org/10.1007/978-1-4615-2173-0_7.

Cox S., Gupta S. and Abu-Ghannami N. 2012. Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. LWT-Food Sci. Technol. 47:300-307.DOI: doi.org/10.1016/j.lwt.2012.01.023

Crowe J.H., Crowe L.M., Carpenter J.F., Rudolph A.S., Winstrom C.A., Spargo B.J. and Anchordoguy T.J. 1998. Interactions of sugars with membranes. Biochim Biophys Acta 947(2):367-384. DOI: doi.org/10.1016/0304-4157(88)90015-9

D’Abrosca B., Scognamiglio M., Corrado L., Chiocchio I., Zampella L., Mastrobuoni F., Rega P., Scortichini M., Fiorentino A. and Petriccione M., 2017. Evaluation of different training system on Annurca apple fruits revealed by agronomical, qualitative and NMR-based metabolomi approaches. Food Chem. 222:18-27. DOI: doi.org/10.106./j.foodchem.2016.11.144

Da Costa Ribeiro A.S., Aguiar-Oliveira E. and Maldonado R.R., 2016. Optimization of osmotic dehydration of pear followed by conventional drying and their sensory quality. LWT-Food Sci. Technol. 72:407-415. DOI: doi.org/10.1016/j.lwt.2016.04.062

Dermesonlouoglou E.K., Giannakourou M.C. and Taoukis P. 2007. Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. J. Food Eng. 78:272-280. DOI: doi.org/10.1016/j.jfoodeng.2005.09.026

Doymaz I. 2010. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod Process 88(2-3):124-132. DOI: doi.org/10.1016/j.fbp.2009.09.003

Doymaz I. 2007. Air-drying characteristics of tomatoes. J. Food Eng. 78:1291-1297. DOI: doi.org/10.1016/j.jfoodeng.2005.12.047

García-Pascual P., Sanjuán N., Melis R. and Mulet A. 2006. Morchella esculenta (morel) rehydration process modeling. J. Food Eng. 72(4):346-353. DOI: doi.org/10.1016/j.jfoodeng.2004.12.014

Junqueira J.R.J., Correra J.L.G., Oliveira H.M. Avelar R.I.S. and Pio L.A.S. 2017. Convective drying of cape gooseberry fruits: Effect of pretreatments on kinetics and quality parameters. LWT-Food Sci. Technol. 82:404-410. DOI: doi.org/10.1016/j.lwt.2017.04.072.

Krokida M.K. and Marinos-Kouris D. 2003. Rehydration kinetics of dehydrated products. J. Food Eng. 57:7-1. DOI: doi.org/10.1016/S0260-8774(02)00214-5

Krokida M.K., Karathanos V.T. and Maroulis Z.B. 2010. Compression analysis of dehydrated agricultural products. Dry Technol. 18:395-408. DOI: doi.org/10.1080/07373930008917711

Lewicki P.P. 1998. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Internat J. Food Prop. 1(1):1-22. DOI: doi.org/10.1080/10942919809524561

Link J.V., Tribuzi G. and Laurindo J.B. 2017. Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT-Food Sci. Technol. 84:711-725. DOI: doi.org/10.1016/j.lwt.2017.06.045

Lo Scalzo R., Testoni A. and Genna A. 2001. “Annurca” apple fruit, a Southern Italy apple cultivar textural properties and aroma composition. Food Chem. 73:333-343. DOI: doi.org/10.1016/S0308-8146(00)00306-X

Lopez-Quiroga E., Prosapio V., Fryer P., Norton I.T. and Bakalis S., 2019. A model-based study of rehydration kinetics in freeze-dried tomatoes. Energy Procedia 161:75-82. DOI: doi.org/doi:10.1016/j.egypro.2019.02.060

Maldonado S., Arnau E. and Bertuzzi M.A. 2010. Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. J. Food Eng. 96:333-341. DOI: doi.org/10.1016/j.jfoodeng.2009.08.017

Moreira R., Chenlo F., Chaguri L. and Fernandes C. 2008. Water absorption, texture and colour kinetics of air-dried chestnuts during rehydration. J. Food Eng. 86:584-594. DOI: doi.org/10.1016/j.jfoodeng.2007.11.012

Ohtake S. and Wang Y.J. 2011. Trehalose: current use and future applications. J.Pharm. Sci. 100(6): 220-223. DOI: doi.org/10.1002/jps.22458

Önal B., Adiletta G., Crescitelli A., Di Matteo M. and Russo P., 2019. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food Bioprod.Process 115:87-99. DOI: doi.org/10.1016/j.fbp.2019.03.002

Patist A. and Zoerb H. 2005. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf. B: Biointerfaces 40:107-113. DOI: doi.org/10.1016/j.colsurfb.2004.05.003

Ponkham K., Meeso N., Soponronnarit S. and Siriamornpun S. 2012. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. Food Bioprod. Process 90:155-164. DOI: doi:10.1016/j.fbp.2011.02.008

Proietti N., Adiletta G., Russo P., Buonocore R., Mannina L., Crescitelli A. and Capitani, D. 2018. Evolution of physicochemical properties of pear during drying by conventional techniques, portable-NMR, and modelling. J. Food Eng. 230:82-98. DOI: doi.org/10.1016/j.jfoodeng.2018.02.028

Rojas M.L. and Augusto P.E.D. 2018. Ethanol pre-treatment improves vegetable drying and rehydration: kinetics, mechanism and impact on viscoelastic properties. J. Food Eng. 233:17-27. DOI: doi.org/10.1016/j.jfoodeng.2018.03.028

Russo P., Adiletta G., Di Matteo M., Farina V., Corona O. and Cinquanta L. 2019. Drying kinetics and physico-chemical quality of mango slices. Chem. Eng. Trans. 75:109-114. DOI: doi.org/10.3303/CET1975019

Tunde-Akintude T.Y. 2008. Effect of soaking water temperature and time on some rehydration characteristics and nutrient loss in dried bell pepper. Agri.Eng. Int. E-J-CIGR, Vol X.

Vásquez-Parra J.E., Ochoa-Martínez C.I. and Bustos-Parra M. 2013. Effects of chemical and physical pretreatment on convective drying of cape gooseberry fruits (Physalis peruviana). J. Food Eng.119:684-654. DOI: doi.org/10.1016/j.jfoodeng.2013.06.037

Vega-Gálvez A., Lemus-Mondaca R., Bikbao-Sainz C., Yagnam F. and Rojas A. 2008. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Process. Eng. 31(1):120-137. DOI: doi.org/10.1111/j.1745-4530.2007.00145.x

Wallach, R., Traygot, O. And Saguy I.S. 2011. Modeling of rehydration of porous food materials: II. The dual porosity approach. J.Food Eng. 105:416-421. DOI: doi.org/10.1016/j.jfoodeng.2011.01.024

Xin Y., Zhang M. and Adhikari B. 2013. Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. Var. Botrytis L.). J. Food Eng. 119:640-647. DOI: doi.org/10.1016/j.jfoodeng.2013.06.035

Zayas J., 1997. Functionality of proteins in food. Heidelberg: Springer-Verlag.

Zura-Bravo L., Ah-Hen K., Vega-Gálvez A., Garcia-Segovia P. and Lemus-Mondaca R. 2013. Effect of rehydration temperature on functional properties, antioxidant capacity and structural characteristics of apple (Granny Smith) slices in relation to mass transfer kinetics. J. Food Process. Eng. 36:559-571. DOI: doi.org/10.1111/jfpe.12018