EFFECTS OF ULTRASOUND TREATMENT ON STRUCTURAL, CHEMICAL AND FUNCTIONAL PROPERTIES OF PROTEIN HYDROLYSATE OF RAINBOW TROUT (ONCORHYNCHUS MYKISS) BY-PRODUCTS

Main Article Content

G.B. MISIR
S. KORAL

Keywords

by-products, fish protein hydrolysate, Oncorhynchus mykiss, rainbow trout, ultrasound hydrolysis

Abstract

In this study, the effects of ultrasound treatment on biochemical, physical, structural and functional properties of fish protein hydrolysate of rainbow trout (Oncorhynchus mykiss) by-products were investigated. Enzymatic hydrolysis was conducted by Alcalase 2.4 L, pH 8, 1 h at 60°C, and enzyme/substrate ratio at 0.5%. A probe-type ultrasound was used for ultrasound assisted hydrolysis (UH) process. Higher protein recovery was obtained in UH than in the conventional enzymatic hydrolysis (CH). The highest foaming capacities of CH and UH were measured as 137.5% and 152.5%, respectively (p<0.05). Overall, our data suggest that ultrasound treatment helps to improve the functional properties such as foaming capacity and stability.
Abstract 1073 | pdf Downloads 1102

References

Adler-Nissen J. 1986. Enzymic hydrolysis of food proteins. New York, USA: Elsevier Applied Science Publishers Ltd. Essex, England 612 p.

Anon 2008. Soy processing. Available at www.dspace.dial.pipex.com/town/park/gfm11/soya.shtml Assessed 17/09/2017.

AOAC. 1990. Official Methods of Analysis, 14th Edition. Association of Analytical Chemists. Washington DC.

AOCS. 1989. Official Methods and Recommended Practices of the American Oil Chemists Society, Official method Ba 11-65. Champaign, IL: American Oil Chemists Society.

Apak R., Guclu K., Ozyurek M. and Karademir S.E. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52(26):7970-7981. DOI: doi.org/10.1021/jf048741x.

Arason S., Karlsdottir M., Valsdottir T., Slizyte R., Rustad T., Falch E., Jakobsen G. 2009. Maximum resource utilization - Value added fish by-products. Nordic Innovation, 108 p.

Arvanitoyannis I.S., Kotsanopoulos K.V., and Savva A.G. 2015. Use of Ultrasounds in the Food Industry. Methods and Effects on Quality, Safety and Organoleptic Characteristics of Foods: A Review. Critical Reviews in Food Sci Nutr. 57(1):109-128. DOI: doi.org/10.1080/10408398.2013.860514.

Arzeni C., Martinez K., Zema P., Arias A., Perez O.E., and Pilosof A.M.R. 2012. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 108(3):463-472. DOI: doi.org/10.1016/j.jfoodeng.2011.08.018.

Awad T.S., Moharram H.A., Shaltout O.E., Asker D. and Youssef M.M. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48(2):410-427.DOI: doi.org/10.1016/j.foodres.2012.05.004.

Benjakul S. and Morrissey M.T. 1997. Protein hydrolysates from pacific whiting solid wastes. J. Agric. and Food Chem. 45 (9) :3423-3430. DOI: doi.org/10.1021/jf970294g.

Binsan W., Benjakul S., Visessanguan W., Roytrakul S., Tanaka M. and Kishimura H. 2008. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem.106, pp. 185-193.

Bryant C.M. and McClements D.J. 1999. Ultrasonic spectrometry study of the influence of temperature on whey protein aggregation. Food Hydrocolloids 13(6):439-444.

Chalamaiah M., Rao G.N., Rao D.G. and Jyothirmayi T. 2010. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem. 120(3):652-657. DOI: doi.org/10.1016/j.foodchem.2009.10.057.

Can Z. and Baltas N. 2016. Bioactivity and Enzyme Inhibition Properties of Stevia rebaudiana. Current Enzyme Inhib. 12:188-194.

Cobb B.F. and Hayder K. 1972. Development of a process for preparing a fish protein concentrate with rehydration and emulsifying capacities. J. Food Sci. 37(5):743-750.

Damodaran S. 1997. Protein-stabilized foams and emulsions. In S. Damodaran and A. Paraf (Eds.), Food proteins and their applications. New York: Marcel Dekker.

Hsu K.C. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 122(1):42-48. DOI: doi.org/10.1016/j.foodchem.2010.02.013.

Huang L., Dai C., Li Z. and Ma H. 2015. Antioxidative activities and peptide compositions of corn protein hydrolysates pretreated by different ultrasonic methods. J. Food Nutr. Res. 3(7):415-421. DOI: doi.org/10.12691/jfnr-3-7-2.

Ilhan R. and Gülyavuz H. 2003. Antalya Körfezi’nden avlanan mürekkep baliginin (Sepia officinalis L.1758) et kalitesi ve raf ömrünün belirlenmesi XII. Ulusal Su Ürünleri Sempozyumu, Elazig.

Jambrak A.R., Lelas V., Mason T.J., Krešic G. and Badanjak M. 2009. Physical properties of ultrasound treated soy proteins. J. Food Eng. 93(4):386-393. DOI: doi.org/10.1016/j.jfoodeng.2009.02.001.

Jiang Z., Tian B., Brodkorb A. and Huo G. 2010. Production, analysis and in vivo evaluation of novel angiotensin I-converting enzyme inhibitory peptides from bovine casein. Food Chem. 123(3):779-786.

Kadam S.U., Tiwari B.K. Álvarez C. and O'Donnell C.P. 2015. Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Sci. Technol. 46(1):60-67. DOI: doi.org/10.1016/j.tifs.2015.07.012.

Kangsanant S., Murkovic M. and Thongraung C. 2014. Antioxidant and nitric oxide inhibitory activities of tilapia (Oreochromisniloticus) protein hydrolysate: Effect of ultrasonic pretreatment and ultrasonic-assisted enzymatic hydrolysis. Inter J. Food Sci. Technol. 49(8):1932-1938. DOI: doi.org/10.1111/ijfs.12551.

Kentish S., Ashok kumar M. 2011. The physical and chemical effects of ultrasound. In: Feng H., Barbosa-Cánovas G.V., Weiss J. (Eds.), Ultrasound Technologies for Food and Bioprocessing. Springer Sci. Business Media, New York, pp. 1-12.

Kittiphattanabawon P., Benjakul S., Visessanguan W. and Shahidi F., 2012. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: Antioxidant activity and its potential in model systems. Food Chemistry 135(3)1118-1126. DOI: doi.org/10.1016/j.foodchem.2012.05.080.

Klomklao S. and Benjakul S. 2018. Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): antioxidative activity and functional properties. Turk. J. Fish. Aquat. Sci. 18:69-79.DOI: doi.org/10.4194/1303-2712-v18_1_08.

Kristinsson H.G. and Rasco B.A. 2000. Fish protein hydrolysates: production, biochemical and functional properties. Crit. Rev. Food Sci. Nutr.40(1):43-81. DOI: doi.org/10.1080/10408690091189266.

Li X., Wang L., Zhang C., Rahimnejad S., Song, K. and Yuan X. 2018. Effects of supplementing low-molecular-weight fish hydrolysate in high soybean meal diets on growth, antioxidant activity and non-specific immune response of pacific white shrimp (Litopenaeus vannamei) Turk. J. Fish. Aquat. Sci. 18:717-727. DOI: doi.org/10.4194/1303-2712-v18_5_07.

Liaset B., Lied E. and Espe M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterisation and nutritional evaluation. J. Sci. Food Agric, 80(5):581-589. DOI: doi.org/10.1002/(SICI)1097-0010(200004)80:5<581:AID-JSFA578>3.0.CO;2-I.

Ma H., Huang L., Jia J., He R., Luo L. and Zhu W. 2011. Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochem. 18(1):419-424. DOI: doi.org/10.1016/j.ultsonch.2010.07.014.

McClements D.J. 1995. Advances in the application of ultrasound in food analysis and processing. Trends in Food Sci. Technol. 6(9):293-9. DOI: doi.org/10.1016/S0924-2244(00)89139-6.

Mentese E., Yilmaz F., Baltas N., Bekircan O. and Kahveci B. 2015. Synthesis and antioxidant activities of some new triheterocyclic compounds containing benzimidazole, thiophene and 1,2,4-triazole rings, J Enzyme Inhib Med Chem. 30(3):435-41. DOI: doi.org/10.3109/14756366.2014.943203.

Nalinanon S., Benjakul S., Kishimura H. and Shahidi F. 2011. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 124:1354-1362.

Pelegrine D.H.G. and Gasparetto C.A. 2005. Whey proteins solubility as function of temperature and pH. LWT Food Sci. Technol. 38(1):77-80. DOI: doi.org/10.1016/j.lwt.2004.03.013.

Pires C., Clemente T., and Batista I. 2012. Functional and antioxidative properties of protein hydrolysates from Cape hake by-products prepared by three different methodologies. J. Sci. Food Agric. 93(4):771-780. DOI: doi.org/10.1002/jsfa.5796.

Rajapakse, N. Mendis, E. Young W.K. and Kim S.K. 2005. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties Food Research International 38, 2, 175-182.

Raymundo A., Empis J. and Sousa I. 2000. Effect of pH and NaCl on rheological and textural properties of lupin protein emulsions. In: P. A. Williams and G. O. Phillips (Eds.). Gums and stabilizers for the food industry. Cambridge, UK:Royal Society of Chemistry.

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radicalcation decolorizati on assay, Free Radical Biol. Med. 26(9-10):1231-1238. DOI: doi.org/10.1016/S0891-5849(98)00315-3.

Sarmadi B.H. and Ismail A. 2010. Antioxidative peptides from food proteins: A review, Peptides, 31(10):1949-1956. DOI: doi.org/10.1016/j.peptides.2010.06.020.

Sathivel S., Bechtel P.J., Babbitt J., Prinyawiwatkul W., Negulescu I.I. and Reppond K.D. 2005. Properties of protein powders from arrow tooth flounder (Atheresthes stomias) and herring (Clupea harengus) by-products. J. Agric. Food Chem. 52(16):5040-5046. DOI: doi.org/10.1021/jf0351422.

Shahidi F., Han X. and Synowiecky J. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53:285-293. DOI: doi.org/10.1016/0308-8146(95)93934-J.

Sokal R.R. and Rohlf F.J. 1987. Introduction to biostatistics. 2nd edt., New York: W.H 486 Freeman and Company.

Soria-Hernández C., Serna-Saldívar S. and Chuck-Hernández C. 2015. Physicochemical and functional properties of vegetable and cereal proteins as potential sources of novel food ingredients. Food Technol. Biotechnol. 53(3):269-277. DOI: doi.org/10.17113 /ftb.53.03.15.3920.

TurKomp. 2014. Turkish Food Composition Database. www.turkomp.gov.tr/food/101,107,108. Assessed 17/11/2017

Wilde P.J. and Clarke D.C. 1996. Foam formation and stability. in methods of testing protein functionality, edt. G.M. Hall pp. 110-52 London: Blackie Academic.

Wrolstad R.E., Acree T.E., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Smith D.M. and Sporns P. 2005. Handbook of Food Analytical Chemistry, 768 p. Wiley -Interscience, Hoboken, N. J.

Yang F., Hu F., Jiang Q., Xu Y. and Xia W. 2016. Effect of pretreatments on hydrolysis efficiency and antioxidative activity of hydrolysates produced from bighead carp (Aristichthys nobilis). J. Aquat. Food Prod. Technol. 25:(6):916-927.

Yilmaz F., Mentese E. and Baltas N. 2017. Synthesis and antioxidant evaluation of some novel benzimidazole derivatives containing a triazole nucleus. Letters in Drug Design Discovery 14:201-208.

Zhang Y., Ma H., Wang B., Qu W., Li Y., He R. and Wali A. 2015. Effects of ultrasound pretreatment on the enzymolysis and structural characterization of wheat gluten. Food Biophysics 10(4):385-395. DOI: doi.org/10.1007/s11483-015-9393-4.

Zhou, M. Liu, J. Zhou, Y. Huang, X. Liu, F. Pan, S. Hu, H. (2016). Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science and Emerging Technologies 34:205-213.