A review of nutritional implications of bioactive compounds of Ginger (Zingiber officinale Roscoe), their biological activities and nano-formulations

Main Article Content

Muhammad Ishfaq
Wanying Hu
Zhihua Hu
Yurong Guan
Ruihong Zhang

Keywords

absorption, bioactive compounds, biological activities, ginger, nano-formulations

Abstract

Ginger is a rhizome of the family Zingiberaceae and is one of the most commonly used spices in food and beverages worldwide. The pharmacological activities of ginger, including antioxidant, anti-inflammatory, anticancer, and protective effects against pain and gastrointestinal tract disorders, are primarily attributed to its phenolic compounds. However, knowledge about the mechanisms of toxicity, absorption, molecular targets, and dose–response relationship of ginger in human clinical studies is still elusive. The aim of this review is to give an overview of the current literature in the context of bioactive compounds and biological activities of ginger. Furthermore, recent findings regarding the absorption, tissue distribution, and nano-formulations of ginger bioactive compounds are discussed. The current in vitro and in vivo studies identified and validated ginger extracts and bioactive compounds, including gingerols, zingiberene, shogaols, and zingerone. Despite the data available regarding the pharmacological uses of ginger together with a deep mechanistic approach about the pharmacokinetic, pharmacodynamic and dose-response studies in humans is yet to be provided. Studies on the absorption, bioavailability, adverse reactions, and safe doses of the bioactive compounds of ginger will additionally improve its therapeutic applications. Nonetheless, the use of nano-formulations of bioactive compounds of ginger will be a more effective strategy in drug delivery. These novel evidences may bring ginger to the forefront of nutraceuticals for the treatment and/or prevention of various human health disorders.

Abstract 1182 | PDF Downloads 695 HTML Downloads 388 XML Downloads 224

References

Abolaji A.O., Ojo M., Afolabi T.T., Arowoogun M.D., Nwawolor D. and Farombi E.O. 2017. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact. 270:15–23. 10.1016/j.cbi.2017.03.017

Aeschbach R., Loliger J., Scott B.C., Murcia A., Butler J., Halliwell B. and Aruoma O.I. 1994. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol. 32(1):31–36. 10.1016/0278-6915(84)90033-4

Afzal M., Al-Hadidi D., Menon M., Pesek J. and Dhami M.S. 2001. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact. 18(3–4):159–190. 10.1515/DMDI.2001.18.3-4.159

Ahmad J., Akhter S., Rizwanullah M., Amin S., Rahman M., Ahmad M.Z., Rizvi M.A., Kamal M.A. and Ahmad F.J. 2015. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 8:55–66. 10.2147/NSA.S49052

Ali B.H., Blunden G., Tanira M.O. and Nemmar A. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol. 46(2):409–420. 10.1016/j.fct.2007.09.085

Amran A.Z., Jantan I., Dianita R. and Buang F. 2015. Protective effects of the standardized extract of Zingiber officinale on myocardium against isoproterenol-induced biochemical and histopathological alterations in rats. Pharm Biol. 53(12):1795–1802. 10.3109/13880209.2015.1008147

Aneja P., Rahman M., Beg S., Aneja S., Dhingra V. and Chugh R. 2014. Cancer targeted magic bullets for effective treatment of cancer. Recent Pat Antiinfect Drug Discov 9(2):121–135. 10.2174/1574891X10666150415120506

Ansari J.A., Ahmad M.K., Khan A.R., Fatima N., Khan H.J., Rastogi N., Mishra D.P. and Mahdi A.A. 2016. Anticancer and antioxidant activity of Zingiber officinale Roscoe rhizome. Indian J Exp Biol. 54(11):767–773. 10.9734/BJPR/2016/26198

Arablou T., Aryaeian N., Valizadeh M., Sharifi F., Hosseini A.F. and Djalali M. 2014. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. 65(4):515–520. 10.3109/09637486.2014.880671

Asami A., Shimada T., Mizuhara Y., Asano T., Takeda S., Aburada T., Miyamoto K. and Aburada M. 2010. Pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe (part I). J Nat Med. 64(3):281–287. 10.1007/s11418-010-0404-y

Behroozeh A., Mazloumi Tabrizi M., Kazemi S.M., Choupani E., Kabiri N., Ilbeigi D., Heidari Nasab A., Akbarzadeh Khiyavi A. and Seif Kurdi A. 2018. Evaluation the anti-cancer effect of PEGylated nano-niosomal gingerol, on breast cancer cell lines (T47D), in vitro. Asian Pac J Cancer Prev. 19(3):645–648.

Bhat B.G., Sambaiah K. and Chandrasekhara N. 1985. The effect of feeding fenugreek and ginger on bile composition in the albino rat. Nutr Rep Int. 32(5):1145–1151.

Brahma Naidu P., Uddandrao V.V., Ravindar Naik R., Suresh P., Meriga B., Begum M.S., Pandiyan R. and Saravanan G. 2016. Ameliorative potential of gingerol: promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol 419:139–147. 10.1016/j.mce.2015.10.007

Chen H., Fu J., Chen H., Hu Y., Soroka D.N., Prigge J.R., Schmidt E.E., Yan F., Major M.B., Chen X. and Sang S. 2014. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo. Chem Res Toxicol. 27(9):1575–1585. 10.1021/tx500211x

Du H., Li L., Bennett D., Guo Y., Key T.J., Bian Z., Sherliker P., Gao H., Chen Y., Yang L., Chen J., Wang S., Du R., Su H., Collins R., Peto R., Chen Z., and S. China Kadoorie Biobank. 2016. Fresh fruit consumption and major cardiovascular disease in China. N Engl J Med. 374(14):1332–1343. 10.1056/NEJMoa1501451

Ebrahimzadeh Attari V., Malek Mahdavi A., Javadivala Z., Mahluji S., Zununi Vahed S. and Ostadrahimi A. 2018. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother Res. 32(4):577–585. 10.1002/ptr.5986

Ebrahimzadeh Attari V., Ostadrahimi A., Asghari Jafarabadi M., Mehralizadeh S. and Mahluji S. 2016. Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: a RCT. Eur J Nutr. 55(6):2129–2136. 10.1007/s00394-015-1027-6

ElRokh el S.M., Yassin N.A., El-Shenawy S.M. and Ibrahim B.M. 2010. Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats. Inflammopharmacol. 18(6):309–315. 10.1007/s10787-010-0053-5

Ghayur M.N. and Gilani A.H. 2005. Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. J Cardiovasc Pharmacol. 45(1):74–80. 10.1097/00005344-200501000-00013

Ghayur M.N., Gilani A.H., Afridi M.B. and Houghton P.J. 2005. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways. Vas Pharmacol. 43(4):234–241. 10.1016/j.vph.2005.07.003

Gomar A., Hosseini A. and Mirazi N. 2014. Memory enhancement by administration of ginger (Zingiber officinale) extract on morphine-induced memory impairment in male rats. J Acute Dis. 3(3). 10.1016/S2221-6189(14)60047-0

Grzanna R., Lindmark L. and Frondoza C.G. 2005. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 8(2):125–132. 10.1089/jmf.2005.8.125

Gujral S., Bhumra H. and Swaroop M. 1978. Effect of ginger (Zingebar officinate Roscoe) oleoresin on serum and hepatic cholesterol levels in cholesterol fed rats. Nutr Rep Int. 17(2):183–189.

Habib S.H.M., Makpol S., Hamid N.A.A., Das S., Ngah W.Z.W. and Yusof Y.A.M. 2008. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics. 63(6):807–813. 10.1590/S1807-59322008000600017

Ho S.C., Chang K.S. and Lin C.C. 2013. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 141(3):3183–3191. 10.1016/j.foodchem.2013.06.010

Hosseini A. and Mirazi N. 2014. Acute administration of ginger (Zingiber officinale rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice. Epilepsy Res. 108(3):411–419. 10.1016/j.eplepsyres.2014.01.008

Hosseinzadeh A., Bahrampour Juybari K., Fatemi M.J., Kamarul T., Bagheri A., Tekiyehmaroof N. and Sharifi A.M. 2017. Protective effect of ginger (Zingiber officinale Roscoe) extract against oxidative stress and mitochondrial apoptosis induced by Interleukin-1beta in cultured chondrocytes. Cells Tissues Organs 204(5–6):241–250. 10.1159/000479789

Hsiang C.Y., Cheng H.M., Lo H.Y., Li C.C., Chou P.C., Lee Y.C. and Ho T.Y. 2015. Ginger and zingerone ameliorate lipopolysaccharide-induced acute systemic inflammation in mice, assessed by nuclear factor-kappab bioluminescent imaging. J Agric Food Chem. 63(26):6051–6058. 10.1021/acs.jafc.5b01801

Huh E., Lim S., Kim H.G., Ha S.K., Park H.Y., Huh Y. and Oh M.S. 2018. Ginger fermented with Schizosaccharomyces pombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta1–42 plaque injected mice. Food Funct 9(1):171–178. 10.1039/C7FO01149K

Hung J.Y., Hsu Y.L., Li C.T., Ko Y.C., Ni W.C., Huang M.S. and Kuo P.L. 2009. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem. 57(20):9809–9816. 10.1021/jf902315e

Ji K., Fang L., Zhao H., Li Q., Shi Y., Xu C., Wang Y., Du L., Wang J. and Liu Q. 2017. Ginger Oleoresin alleviated gamma-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells. Oxid Med Cell Longev. 2017:1480294. 10.1155/2017/1480294

Jiang S.Z., Wang N.S. and Mi S.Q. 2008. Plasma pharmacokinetics and tissue distribution of [6]-gingerol in rats. Biopharm Drug Dispos. 29(9):529–537. 10.1002/bdd.638

Khalili M., Akbarzadeh A., Chiani M. and Torabi S. 2013. The effect of nanoliposomal and PE gylated nanoliposomal forms of 6-gingerol on breast cancer cells. 2:29–33.

Khosravani M., Azarbayjani M.A., Abolmaesoomi M., Yusof A., Zainal Abidin N., Rahimi E., Feizolahi F., Akbari M., Seyedjalali S. and Dehghan F. 2016. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. Eur Rev Med Pharmacol Sci. 20(8):1617–1622.

Kim S.O., Chun K.S., Kundu J.K. and Surh Y.J. 2004. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactors. 21(1–4):27–31. 10.1002/biof.552210107

Kim H.W., Oh D.H., Jung C., Kwon D.D. and Lim Y.C. 2011. Apoptotic effects of 6-gingerol in LNCaP human prostate cancer cells. Soonchunhyang Med Sci. 17(2):75–79. 10.15746/sms.11.017

Kiuchi F., Iwakami S., Shibuya M., Hanaoka F. and Sankawa U. 1992. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem Pharm Bull (Tokyo). 40(2):387–391. 10.1248/cpb.40.387

Kumar V., Bhatt P.C., Rahman M., Kaithwas G., Choudhry H., Al-Abbasi F.A., Anwar F. and Verma A. 2017. Fabrication, optimization, and characterization of umbelliferone beta-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int J Nanomed. 12:6747–6758. 10.2147/IJN.S136629

Lee S.H., Cekanova M. and Baek S.J. 2008. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog. 47(3):197–208. 10.1002/mc.20374

Li Y., Hong Y., Han Y., Wang Y. and Xia L. 2016. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J Chromatogr B Analyt Technol Biomed Life Sci. 1011:223–232. 10.1016/j.jchromb.2016.01.009

Li Y., Tran V.H., Duke C.C. and Roufogalis B.D. 2012. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evid Based Compl Alternat Med. 2012:516870. 10.1155/2012/516870

Li Y., Tran V.H., Kota B.P., Nammi S., Duke C.C. and Roufogalis B.D. 2014. Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic Clin Pharmacol Toxicol. 115(2):209–215. 10.1111/bcpt.12196

Li Z., Wang Y., Gao M.L., Cui W., Zeng M., Cheng Y. and Li J. 2018. Nine new gingerols from the rhizoma of Zingiber officinale and their cytotoxic activities. Molecules. 23(2):315. 10.3390/molecules23020315

Li, F., Wang Y., Parkin K.L., Nitteranon V., Liang J., Yang W., Li Y., Zhang G. and Hu Q. 2011. Isolation of quinone reductase (QR) inducing agents from ginger rhizome and their in vitro anti-inflammatory activity. Food Res Int. 44(6):1597–1603. 10.1016/j.foodres.2011.04.010

Lim S., Moon M., Oh H., Kim H.G., Kim S.Y. and Oh M.S. 2014. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem. 25(10):1058–1065. 10.1016/j.jnutbio.2014.05.009

Liu Q., Peng Y.B., Zhou P., Qi L.W. and Li P. 2013. 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α. Mol Cancer. 12(1):1–12. 10.1186/1476-4598-12-135

Luettig J., Rosenthal R., Lee I.M., Krug S.M. and Schulzke J.D. 2016. The ginger component 6-shogaol prevents TNF-alpha-induced barrier loss via inhibition of PI3K/Akt and NF-kappaB signaling. Mol Nutr Food Res. 60(12):2576–2586. 10.1002/mnfr.201600274

Lv L., Chen H., Soroka D., Chen X., Leung T.C. and Sang S. 2012. 6-Gingerdiols as the major metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic effects on human cancer cells. J Agric Food Chem. 60(45):11372–11377. 10.1021/jf303879b

Mahmoud R.H. and Elnour W.A. 2013. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur Rev Med Pharmacol Sci. 17(1):75–83.

Mahomoodally M.F., Aumeeruddy M.Z., Rengasamy K.R.R., Roshan S., Hammad S., Pandohee J., Hu X. and Zengin G. 2021. Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications. Semin Cancer Biol. 69:140–149. 10.1016/j.semcancer.2019.08.009

Mao Q.Q., Xu X.Y., Cao S.Y., Gan R.Y., Corke H., Beta T. and Li H.B. 2019. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 8(6): 185. 10.3390/foods8060185

Markam R. and Bajpai A.K. 2020. Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-ASA) in treatment of inflammatory bowel diseases: an in vitro study. React Funct Polym. 149:104520. 10.1016/j.reactfunctpolym.2020.104520

Martin A., Fuzer A.M., Becceneri A.B., da Silva J.A., Tomasin R., Denoyer D., Kim S.H., McIntyre K.A., Pearson H.B., Yeo B., Nagpal A., Ling X., Selistre-de-Araujo H.S., Vieira P.C., Cominetti M.R. and Pouliot N. 2017. [10]-Gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo. Oncotarget. 8(42):72260–72271. 10.18632/oncotarget.20139

Misawa K., Hashizume K., Yamamoto M., Minegishi Y., Hase T. and Shimotoyodome A. 2015. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor delta pathway. J Nutr Biochem. 26(10):1058–1067. 10.1016/j.jnutbio.2015.04.014

Mustafa, T., Srivastava K.C. and Jensen K.B. 1993. Drug development report 9. Pharmacology of ginger.

Natalia D., Valero-Muñoz M., Martín-Fernández B., Ballesteros S., López-Farré A., Ruiz-Roso B. and Lahera V. 2017. Molecular factors involved in the hypolipidemic-and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Appl Physiol Nutr Metab. 42(2):209–215. 10.1139/apnm-2016-0374

Nile S.H. and Park S.W. 2015. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Indust Crops Prod. 70:238–244. 10.1016/j.indcrop.2015.03.033

Oh S., Lee M.S., Jung S., Kim S., Park H., Park S., Kim S.Y., Kim C.T., Jo Y.H. and Kim I.H. 2017. Ginger extract increases muscle mitochondrial biogenesis and serum HDL-cholesterol level in high-fat diet-fed rats. J Funct Foods. 29:193–200. 10.1016/j.jff.2016.12.023

Oyagbemi A.A., Saba A.B. and Azeez O.I. 2010. Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention. Biofactors. 36(3):169–178. 10.1002/biof.78

Pan M.H., Hsieh M.C., Kuo J.M., Lai C.S., Wu H., Sang S. and Ho C.T. 2008. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res. 52(5):527–537. 10.1002/mnfr.200700157

Peng L.Q., Cao J., Du L.J., Zhang Q.D., Xu J.J., Chen Y.B., Shi Y.T. and Li R.R. 2017. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants. J Chromatogr A. 1515:37–44. 10.1016/j.fitote.2011.12.028

Peng F., Tao Q., Wu X., Dou H., Spencer S., Mang C., Xu L., Sun L., Zhao Y., Li H., Zeng S., Liu G. and Hao X. 2012. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia. 83(3):568–585. 10.1016/j.fitote.2011.12.028

Peng S., Yao J., Liu Y., Duan D., Zhang X. and Fang J. 2015. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct. 6(8):2813–2823. 10.1039/C5FO00214A

Platel K. and Srinivasan K. 1996. Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. Int J Food Sci Nutr. 47(1):55–59. 10.3109/09637489609028561

Platel K. and Srinivasan K. 2000. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Food Nahrung. 44(1):42–46. 10.1002/(SICI)1521-3803(20000101)44:1<42::AID-FOOD42>3.0.CO;2-D

Platel K. and Srinivasan K. 2004. Digestive stimulant action of spices: a myth or reality? Indian J Med Res. 119(5):167–179.

Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C.J. and Valko M. 2017. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 38(7):592–607. 10.1016/j.tips.2017.04.005

Prakash U.N. and Srinivasan K. 2010a. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br J Nutr. 104(1):31–39. 10.1017/S0007114510000334

Prakash U.N. and Srinivasan K. 2010b. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats. Appl Physiol Nutr Metab. 35(2):134–141. 10.1139/H09-133

Prakash U.N. and Srinivasan K. 2012. Fat digestion and absorption in spice-pretreated rats. J Sci Food Agric. 92(3):503–510. 10.1002/jsfa.4597

Prakash U.N.S. and Srinivasan K. 2013. Enhanced intestinal uptake of iron, zinc and calcium in rats fed pungent spice principles—piperine, capsaicin and ginger (Zingiber officinale). J Trace Elements Med Biol. 27(3):184–190. 10.1016/j.jtemb.2012.11.003

Qi, L.W., Zhang Z., Zhang C.F., Anderson S., Liu Q., Yuan C.S. and Wang C.Z. 2015. Anti-colon cancer effects of 6-Shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am J Chin Med. 43(04):743–756. 10.1142/S0192415X15500469

Radhakrishnan E.K., Bava S.V., Narayanan S.S., Nath L.R., Thulasidasan A.K., Soniya E.V. and Anto R.J. 2014. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS One. 9(8):e104401. 10.1371/journal.pone.0104401

Rahman M., Akhter S., Ahmad M.Z., Ahmad J., Addo R.T., Ahmad F.J. and Pichon C. 2015. Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges. Nanomedicine (Lond). 10 (15):2405–2422. 10.2217/nnm.15.68

Rahman M., Beg S., Verma A., Kazmi I., Patel D.K., Anwar F., Al Abbasi F.A. and Kumar V. 2017. Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: a contemporary view point. Curr Drug Targets. 18(13):1558–1571. 10.2174/1389450118666170414113926

Rodrigues F.A., Prata M.M., Oliveira I.C., Alves N.T., Freitas R.E., Monteiro H.S., Silva J.A., Vieira P.C., Viana D.A., Liborio A.B. and Havt A. 2014. Gingerol fraction from Zingiber officinale protects against gentamicin-induced nephrotoxicity. Antimicrob Agents Chemother. 58(4):1872–1878. 10.1128/AAC.02431-13

Saberi H., Keshavarzi B., Shirpoor A., Gharalari F.H. and Rasmi Y. 2017. Rescue effects of ginger extract on dose dependent radiation-induced histological and biochemical changes in the kidneys of male Wistar rats. Biomed Pharmacother. 94:569–576. 10.1016/j.biopha.2017.07.128

Samad M.B., Mohsin M., Razu B.A., Hossain M.T., Mahzabeen S., Unnoor N., Muna I.A., Akhter F., Kabir A.U. and Hannan J.M.A. 2017. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic beta-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Compl Altern Med. 17(1):395. 10.1186/s12906-017-1903-0

Sambaiah K. and Srinivasan K. 1991. Effect of cumin, cinnamon, ginger, mustard and tamarind in induced hypercholesterolemic rats. Nahrung. 35 (1):47–51. 10.1002/food.19910350112

Sampath C., Rashid M.R., Sang S. and Ahmedna M. 2017. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem. 226:79–88. 10.1016/j.foodchem.2017.01.056

Shanmugam K.R., Mallikarjuna K., Kesireddy N. and Sathyavelu Reddy K. 2011. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 49(4):893–897. 10.1016/j.fct.2010.12.013

Sharma J.N., Srivastava K.C. and Gan E.K. 1994. Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology. 49(5):314–318. 10.1159/000139248

Shukla Y. and Singh M. 2007. Cancer preventive properties of ginger: a brief review. Food Chem Toxicol. 45(5):683–690. 10.1016/j.fct.2006.11.002

Siddaraju M.N. and Dharmesh S.M. 2007. Inhibition of gastric H+, K+-ATPase and helicobacter pylori growth by phenolic antioxidants of Zingiber officinale. Mol Nutr Food Res. 51(3):324–332. 10.1002/mnfr.200600202

Srinivasan K. 2014. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr. 54(3):352–372. 10.1080/10408398.2011.585525

Srinivasan K. 2017. Ginger rhizomes (Zingiber officinale): a spice with multiple health beneficial potentials. Pharma Nutr. 5 (1):18–28. 10.1016/j.phanu.2017.01.001

Takada Y., Murakami A. and Aggarwal B.B. 2005. Zerumbone abolishes NF-kappaB and IkappaB alpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene. 24(46):6957–6969. 10.1038/sj.onc.1208845

Tan B.S., Kang O., Mai C.W., Tiong K.H., Khoo S.B., Pichika M.R., Bradshaw T.D. and Leong C.O. 2013. 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ). Cancer Lett. 336(1):127–139. 10.1016/j.canlet.2013.04.014

Thomson M., Al-Qattan K.K., Al-Sawan A.M., Alnaqeeb M.A., Khan I. and Ali M. 2002. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essential Fatty Acids. 67(6):475–478. 10.1054/plef.2002.0441

Tripathi S., Bruch D. and Kittur D.S. 2008. Ginger extract inhibits LPS induced macrophage activation and function. BMC Compl Altern Med. 8:1. 10.1186/1472-6882-8-1

van Breemen R.B., Tao Y. and Li W. 2011. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia. 82(1):38–43. 10.1016/j.fitote.2010.09.004

Veda S. and Srinivasan K. 2011. Influence of dietary spices on the in vivo absorption of ingested beta-carotene in experimental rats. Br J Nutr. 105(10):1429–1438. 10.1017/S0007114510005179

Wang W., Li C.Y., Wen X.D., Li P. and Qi L.W. 2009. Simultaneous determination of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma by liquid chromatography-mass spectrometry: application to pharmacokinetics. J Chromatogr B Anal Technol Biomed Life Sci. 877(8–9):671–679. 10.1016/j.jchromb.2009.01.021

Wei C.K., Tsai Y.H., Korinek M., Hung P.H., El-Shazly M., Cheng Y.B., Wu Y.C., Hsieh T.J. and Chang F.R. 2017. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci. 18(1):168. 10.3390/ijms18010168

Yeh H.-y., Chuang C.-h., Chen H.-c., Wan C.-j., Chen T.-l. and Lin L.-y. 2014. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT Food Sci Technol. 55(1):329–334. 10.1016/j.lwt.2013.08.003

Yu Y., Zick S., Li X., Zou P., Wright B. and Sun D. 2011. Examination of the pharmacokinetics of active ingredients of ginger in humans. AAPS J. 13(3):417–426. 10.1208/s12248-011-9286-5

Zehsaz F., Farhangi N. and Mirheidari L. 2014. The effect of Zingiber officinale R. rhizomes (ginger) on plasma pro-inflammatory cytokine levels in well-trained male endurance runners. Cent Eur J Immunol. 39(2):174–180. 10.5114/ceji.2014.43719

Zhang G., Nitteranon V., Chan L.Y. and Parkin K.L. 2013. Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger. Food Chem. 140(1–2):1–8. 10.1016/j.foodchem.2013.02.073

Zhu Y., Zhao Y., Wang P., Ahmedna M. and Sang S. 2015. Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal. Chem Res Toxicol. 28(9):1842–1849. 10.1021/acs.chemrestox.5b00293

Zick S.M., Djuric Z., Ruffin M.T., Litzinger A.J., Normolle D.P., Alrawi S., Feng M.R. and Brenner D.E. 2008. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev. 17(8):1930–1936. 10.1158/1055-9965.EPI-07-2934