Anacyclus pyrethrum extracts: examination of bioactive compounds and therapeutic implications through in vivo, in vitro, and in silico assays

Main Article Content

Nour Elhouda-Mekhadmi
Randa Mlik
Asma Abid
Aicha Adaika
Assia Bentahar
Safia Ben Amour
Aicha Mouane
Walid Boussebaa
Messaoud Ramdani
Djilani Ghemam Amara
Ayomide Victor Atoki
Barbara Sawicka
Sheikh F. Ahmad
Sabry M. Attia
Mohammed Messaoudi https://orcid.org/0000-0002-3536-6358

Keywords

Anacyclus pyrethrum, anti-inflammatory, antimicrobial, antioxidant, HPLC-UV-VIS analysis, insecticidal activity

Abstract

Anacyclus pyrethrum, a native Algerian medicinal plant, demonstrates notable therapeutic efficacy. The bioactive profile of the Anacyclus pyrethrum extract was examined using HPLC-UV-VIS, which showed a high concentration of phenolic compounds (33.46 ± 0.57 mg EAG/g EP) and flavonoids (11.08 ± 0.24 mg E Qu/g EP). The Anacyclus pyrethrum extract exhibited significant antioxidant activity in iron chelation (IC50 = 0.019 ± 0.0006 mg/ml) DPPH (IC50 = 0.142± 0.001 mg/ml), ABTS+ (IC50 = 0.079 ± 0.0005 mg/ml) and OH (IC50 = 0.845 ± 0.052mg/ml) radicals. Anti-inflammatory investigations were conducted using both in vitro and in silico methods. The in vitro testing involved evaluating the denaturation of egg albumin and BSA, while the in silico tests focused on measuring the effect of caffeic acid on the COX-2 protein. The anti-inflammatory capacity of the substance was similar to that of Aspirin, with a value of 76.1 ± 1.04% compared to Aspirin’s 81.11 ± 1.6%. Our extract exhibited a fatal dose (LD50) of 45.847 ± 1.661 mg/ml and showed significant antibacterial activity with minimum inhibitory concentrations (MICs) ranging from 2.5 to 27.5 mg/ml. The findings emphasize the wide range of medicinal uses of Anacyclus pyrethrum, underscoring its significance in both traditional and modern pharmacology.

Abstract 56 | PDF Downloads 26 HTML Downloads 0 XML Downloads 3

References

Abbott, W.S. (1925). Method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2): 265–267. 10.1093/jee/18.2.265a

Ak, G., Zengin, G., Sinan, K.I., Mahomoodally, M.F., Picot-Allain, M.C.N., Cakır, O., Bensari, S., Yılmaz, M.A., et al. (2020). A comparative bio-evaluation and chemical profiles of Calendula officinalis L. extracts prepared via different extraction techniques. Applied Sciences, 10(17), 5920. 10.3390/app10175920

Akher, F.B., Ebrahimi, A. & Mostafavi, N. (2017). Characterization of π-stacking interactions between aromatic amino acids and quercetagetin. Journal of Molecular Structure, 1128, 13–20. 10.1016/j.molstruc.2016.08.040

Ates, B., Abraham, L. & Ercal, N. (2008). Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radical Research, 42(4), 372–377. 10.1080/10715760801998638

Auhman, A. (1995). Contribution à l’étude chimique et pharmacologique d’Anacyclus pyrethrum DC (PhD Thesis, University of Marrakech, Morocco).

Baslam, A., Aitbaba, A., Aboufatima, R., Agouram, F., Boussaa, S., Chait, A. & Baslam, M. (2023). Phytochemistry, antioxidant potential, and antibacterial activities of anacyclus pyrethrum: promising bioactive compounds. Horticulturae, 9(11), 1196. 10.3390/horticulturae9111196

Bellakhdar, J. (1997). La Pharmacopée Marocaine Traditionnelle: Médecine Arabe Ancienne Et Savoirs Populaires-Saint–Etienne (2nd ed.). Ibis Press: Saint–Etienne, Paris.

Bernays, E.A., Driver, G.C. & Bilgener, M. (1989). Herbivores and plant tannins. Advances in Ecological Research, 19, 263–302. 10.1016/S0065-2504(08)60160-9

Boğa, M., Ertaş, A., Yilmaz, M.A., Kizil, M., Çeken, T.B., Haşimi, N. Yilmaz Özden, et al. (2015). UHPLC-ESI-MS/MS and GC-MS analyses on phenolic, fatty acid, and essential oil of Verbascum pinetorum with antioxidant, anticholinesterase, antimicrobial, and DNA damage protection effects. Iranian Journal of Pharmaceutical Research, 15(3), 393–405.

Bouaziz, A., Djidel, S., Bentahar, A., & Khennouf, S. (2020). Polyphenolic content, antioxidant and anti-inflammatory activities of Melon (Cucumis melo L. var. inodorus) seeds. Journal of Drug Delivery and Therapeutics, 10(2S), 22–26. 10.22270/jddt.v10i2-s.4022

Bouhafsoun, A., Yilmaz, M.A., Boukeloua, A., Temel, H. & Harche M.K. (2018). Simultaneous quantification of phenolic acids and flavonoids in Chamaerops humilis L. using LC-ESI-MS/MS. Food Science and Technology, 38(Suppl. 1), 242–247. 10.1590/fst.19917

Bouharb, H., El Badaoui, K., Zair, T., El amri, J., Chakir, S. & Alaoui, T. (2014). Sélection de quelques plantes médicinales du Zerhoun pour l’activité antibactérienne contre Pseudomonas aeruginosa. Journal of Applied Biosciences, 78, 6685–6693. 10.4314/jab.v78i1.3

Bruneton, J. (1999). Pharmacognosie : Phytochimie - Plantes médicinales (5th ed.). Lavoisier, France.

Bursal, E., Yilmaz, M.A., Izol, E., Türkan, F., Atalar, M.N., Murahari, M., Aras, A., & Ahmad, M. (2021). Enzyme inhibitory function and phytochemical profile of Inula discoidea using in vitro and in silico methods. Biophysical Chemistry, 277, 106629. 10.1016/j.bpc.2021.106629

Chakou, F.Z., Boual, Z., Hadj, M.D.O.E., Belkhalfa, H., Bachari, K., El Alaoui-Talibi, Z., et al. (2021). Pharmacological investigations in traditional utilization of Alhagi maurorum Medik. in Saharan Algeria: In vitro study of anti-inflammatory and antihyperglycemic activities of water-soluble polysaccharides extracted from the seeds. Plants, 10, 2658. 10.3390/plants10122658

Chalane, F., Bekkouce, A., Yahiaoui, F.Z., Mehdadi, Z. & Hamdaoui, M. (2019). Quantitative analysis of plant biodiversity of Mount Sidi Youcef region of Saida (Western Algeria). Ukrainian Journal of Ecology, 9(3), 315–321. 10.15421/2019_97

Cherrat, A., Amalich, S., Regragui, M., Bouzoubae, A., Elamrani, M., Mahjoubi, M., Bourakhouadar, M. & Zair, T. (2017). Polyphenols content and evaluation of antioxidant activity of Anacyclus pyrethrum (L.) Lag. from Timahdite a Moroccan Middle Atlas region. International Journal of Advanced Research, 5, 569–577. 10.21474/IJAR01/3546

Chouikh, A., Alia, F., Neffar, S., Rebiai, A., Adjal, E. & Chefrour, A. (2018). Evaluation of phenolic contents (quantitative and qualitative) and antioxidant activities in different physiological phases of Genista saharae Coss. & Dur. growing in the Sahara of Algeria. Analele Universităţii din Oradea Fascicula Biologie, 25, 115–121.

Cuendet, M., Hostettmann, K., Potterat, O. & Dyatmiko, W. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80, 1144–1152. 10.1002/hlca.19970800411

Dahiya, P. & Purkayastha, S. (2012). Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian Journal of Pharmaceutical Sciences, 74(5), 443–450. 10.4103/0250–474X.108420

Decker, E.A. & Welch, B. (1990). Role of Ferritin as a lipid oxidation catalyst in muscle food. Journal of Agriculture and Food Chemistry, 38, 674–677. 10.1021/jf00093a019

Duchon, S., Bonnet, J., Marcombe, S., Zaim, M. & Corbel, V. (2009). Pyrethrum: a mixture of natural pyrethrins has potential for malaria vector control. Journal of Medical Entomology, 46(3), 516–522. 10.1603/033.046.0316

Ducombs, G. (2012). Progrès en dermato-allergologie (2nd edn.). John Libbey.

Elazzouzi, H., Fadili, K., Cherrat, A., Amalich, S., Zekri, N., Zerkani, H., Tagnaout, I., et al. (2022). Phytochemistry, biological and pharmacological activities of the Anacyclus pyrethrum (L.) lag: a systematic review. Plants, 11(19): 2578. 10.3390/plants11192578

Elazzouzi, H., Soro, A., Elhilali, F., Bentayeb, A., El Belghiti, M.A., & Zair, T. (2015). Phytochemical study of Anacyclus pyrethrum (L.) of Middle Atlas (Morocco), and in vitro study of antibacterial activity of pyrethrum. Advances in Natural and Applied Sciences, 8(8), 131–141.

El-Nahhal, Y. & El-Nahhal, I. (2021). Cardiotoxicity of some pesticides and their amelioration. Environmental Science and Pollution Research, 28, 44726–44754. 10.1007/s11356-021-14999-9

Emon, M. (2023). Protein characterization, functional annotation, active site analysis of novel uncharacterized conserved protein of bacteroides xylanisolvens: an in silico approach. Biology and Life Sciences Forum, 31.

Fauchère, J.L., & Avril, J.L. (2002). Bactériologie générale et médicale. Ellipses Editions Paris, pp. 365.

Ferrer, M.D., Busquets-Cortés, C., Capo, X., Tejada, S., Tur, J.A., Pons, A., & Sureda, A. (2019). Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Current Medicinal Chemistry, 26(18), 3225–3241. 10.2174/0929867325666180514112124

Garrett, M.M., David, S.G., Robert, S.H., Ruth, H., William, E.H., Richard, K.B., & Arthur, J.O. (1998). Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19(14), 1639–1662. 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Granado-Serrano, A.B., Martin, M.A., Bravo, L., Goya, L., & Ramos, S. (2012). Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chemico-Biological Interactions, 195, 154–164. 10.1016/j.cbi.2011.12.005

Guettaf, S., Abidli, N., Kariche, S., Bellebcir, L., & Bouriche, H. (2016). Phytochemical screening and antioxidant activity of aqueous extract of Genista Saharae (Coss. & Dur.). Der Pharmacia Lettre, 8(1), 50–60.

Halliwell, B. (2008). The wanderings of a free radical. Free Radical Biology and Medicine, 46, 531–542. 10.1016/j.freeradbiomed.2008.11.008

Hans, W.K. (2007). 1000 plants aromatiques et médicinales (Terres éditions). Toulouse, France.

Hemmami, H., Seghir, B.B., Zeghoud, S., Ben Amor, I., Kouadri, I., Rebiai, A., & Atanassova, M. (2023). Desert endemic plants in Algeria: a review on traditional uses, phytochemistry, polyphenolic compounds and pharmacological activities. Molecules, 28(4), 1834. 10.3390/molecules28041834

Hmamouchi, M. (1999). Les Plantes Médicinales Et Aromatiques Marocaines, 1st ed., Fedala: Rabat, Morocco.

Jawhari, F.Z., Moussaoui, A.E.L., Bourhia, M., Imtara, H., Mechchate, H., Es-safi, I., Ullah, R., Ezzeldin, E., et al. (2020). Anacyclus pyrethrum (L): chemical composition, analgesic, anti-inflammatory, and wound healing properties Molecules, 23(22), 5469. 10.3390/molecules25225469

Jawhari, F.Z., Moussaoui A.E.L., Bourhia, M., Imtara, H., Saghrouchni, H., Ammor, K., Ouassou, H., et al. (2021). Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: correlation between total phenolic and flavonoid contents with antioxidant and antimicrobial activities of chemically characterized extracts. Plants, 10(1), 149. 10.3390/plants10010149

Kishor, K., & Lalitha, K.G. (2012). Pharmacognostical studies on the root of Anacyclus pyrethrum DC. Indian Journal of Natural Products and Resources, 3(4), 518–526.

Kushwaha, M., & Vijay, S. (2012). Plant Anacyclus pyrethrum a review. Research Journal of Pharmacognosy and Phytochemistry, 4(3): 164–170.

Ma, W. (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI NCCLS, 26, M7-A7.

Manouze, H., Bouchatta, O., Gadhi, A.C., Bennis, M., Sokar, Z., & Ba-M’hamed, S. (2017). Anti-inflammatory, antinociceptive, and antioxidant activities of methanol and aqueous extracts of Anacyclus pyrethrum roots. Frontiers in Pharmacology, 8, 598. 10.3389/fphar.2017.00598

Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240–16265. 10.3390/molecules191016240

Moghtaderi, H., Sepehri, H., Delphi, L., & Attari, F. (2018). Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB231. BioImpacts, 8, 185–94. 10.15171/bi.2018.21

Mondy, N., Corio-Costet, M.F., Bodin, A., Mandon, N., Vannier, F., & Monge, J.-P. (2006). Importance of sterols acquired through host feeding in synovigenic parasitoid oogenesis. Journal of Insect Physiology, 52, 897–904. 10.1016/j.jinsphys.2006.03.007

Nagendrappa, C.G. (2005). An appreciation of free radical chemistry 3. Free radicals in diseases and health. Resonance, 10, 65–73. 10.1007/BF02834649

Oussou, K.R., Youlou, S., Kanko, C., Guessennd, K.N., Boti, J.B., Ahibo, C., & Casanova, J. (2008). Etude chimique et activité antidiarrhéique des huiles essentielles de deux plantes aromatiques de la pharmacopée Ivoirienne. European Journal of Scientific Research, 1, 94–103.

Perez Y.R., Alvarez D., & Combariza A. (2019). Ligand-protein interactions: a hybrid ab initio/molecular mechanics computational study. Preprints, 1(2019), 1–24. 10.20944/preprints201902.0124.v3

Punia, A., Chauhan, N.S., Singh, D., Kesavan, A.K., Kaur, S., & Sohal, S.K. (2021). Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor. Scientific Reports, 11(1), 1–11. 10.1038/s41598-020-80232-1

Qi, W., Qi, W., Xiong, D., & Long, M. (2022). Quercetin: its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 27(19), 6545. 10.3390/molecules27196545

Quezel, P., & Santa, S. (1963). Nouvelle flore de l’Algerie et des regions desertiques meridionales, Paris.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. 10.1016/S0891-5849(98)00315-3

Riddick, E. (2021). Potential of quercetin to reduce herbivory without disrupting natural enemies and pollinators. Agriculture, 11, 476. 10.3390/agriculture11060476

Selles, C.H., El amine, D.M., Allali, H., & Tabti, B. (2012). Evaluation of antimicrobial and antioxidant activities of solvent extracts of Anacyclus pyrethrum L., from Algeria. Mediterranean Journal of Chemistry, 2, 408–415. 10.13171/mjc.2.2.2012.01.11.22

Sharma, V., Thakur, M., Chauhan, N.S., & Dixit, V.K. (2010). Immunomodulatory activity of petroleum ether extract of Anacyclus pyrethrum. Pharmaceutical Biology, 25(2), 193–200.

Stachowicz-Kuśnierz, A., Korchowiec, B., & Korchowiec, J. (2023). Nucleoside analog reverse-transcriptase inhibitors in membrane environment: molecular dynamics simulations. Molecules, 28(17), 6273. 10.3390/molecules28176273

Stagos D., Portesis, N.S., Spanou, C., Mossialos, D., Aligiannis, N., Chaita, E., Panagoulis, C., Reri, E., & Kaltsounis, L. (2012). Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food and Chemical Toxicology, 50(11), 4115–24. 10.1016/j.fct.2012.08.033

Subasri, G., & John, A.S. (2016). Screening of phytochemical compounds, trace metals, and Antimicrobial activity of Anacyclus pyrethrum. International Journal of Advances in Scientific Research, 2, 32–37. 10.7439/ijasr.v2i1.2891

Than, N.N., Ghazanfar, A., Hodson, J., Tehami, N., Coldham, C., Mergental, H., Manas, D., et al. (2017). Comparing clinical presentations, treatments, and outcomes of hepatocellular carcinoma due to hepatitis C and non-alcoholic fatty liver disease. QJM: An International Journal of Medicine, 110(2), 73-81. 10.1093/qjmed/hcw151

Tyagi, M., da Fonseca, M.M.R., & de Carvalho, C.C.C.R. (2010). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231–241. 10.1007/s10532-010-9394-4

Usmani, A., Khushtar, M., Arif, M., Siddiqui, M.A., Sing, S.P., & Mujahid, M.D. (2016). Pharmacognostic and phytopharmacology study of Anacyclus pyrethrum: An insight. Journal of Applied Pharmaceutical Science, 6, 144–150. 10.7324/JAPS.2016.60325

Wong, S.P., Leong, L.P., & Koh, J.H.W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. 10.1016/j.foodchem.2005.07.058

Yang, K., Deng, X., Jian, S., Zhang, M., Wen, C., Xin, Z., Zhang, L., et al. (2022). Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome–metabolomics analysis. Frontiers in Immunology, 12, 813890. 10.3389/fimmu.2021.813890

Yener, İ., Yilmaz, M.A., Tokul Ölmez, Ö., Akdeniz, M., Tekin, F., Haşimi, N., Alkan, M.H., Öztürk, M., & Ertaş, A. (2020). A detailed biological and chemical investigation of sixteen Achillea species’ essential oils via chemometric approach. Chemistry & Biodiversity, 17(3), e1900484. 10.1002/cbdv.201900484

Zengin, G., Mahomoodally, M.F., Aktumsek, A., Ceylan, R., Uysal, S., Mocan, A., Yilmaz, M.A., et al. (2018), Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties, Food Bioscience, 23, 75–82, 10.1016/j.fbio.2018.03.010