Exploring immuno-genetic resistance in pigs to the food-borne zoonotic pathogen, Toxoplasma gondii: A serological study in Central Italy

Main Article Content

Martina Torricelli
Anna Fratto
Silva Costarelli
Hovirag Lancioni
Alessandra Torina
Carmen Panzieri
Carla Sebastiani
Marcella Ciullo
Deborah Cruciani
Silvia Crotti
Piera Mazzone
Massimo Biagetti

Keywords

food safety, genetic resistance, interleukin-18 gene, One Health, pig’s serological survey, Toxoplasma gondii

Abstract

Toxoplasmosis is a re-emerging food-borne zoonosis of warm-blooded animals caused by Toxoplasma gondii, an obligate intracellular parasite with a complex biological cycle. Until now, the genotypic approach for discovering putative resistance immuno-genetic markers has never been adopted for T. gondii infection. Thus, this study aimed, for the first time, to deepen these novel insights. In particular, pigs, reared in different farms in Central Italy, were phenotypically characterized by serological assays performed on diaphragm meat juice. Out of 179 tested animals, 98 resulted seropositive (54.74%), 57 seronegative (31.84%), and 24 doubtful (13.40%), underlining a possible re-emerging diffusion of this protozoan in the investigated areas. Contextually, an RT-PCR assay, followed by Sanger sequencing for IL-18, a pro-inflammatory cytokine with a key role upstream of the infection, was developed. At this stage, for this interleukin, significant polymorphic variations were not detected compared to the reference sequence, except in a seropositive animal. However, the starting outcomes of this novel and preliminary study will be investigated in depth with different approaches also on other target genes, with a crucial activity in the immunity pathway towards T. gondii, to unveil the possible presence of resistance genetic mechanisms and, finally, to make pork derived food safer.

Abstract 237 | PDF Downloads 181 HTML Downloads 0 XML Downloads 17

References

Andrade, J. M. A., de Oliveira, C. B. S., Meurer, Y. D. S. R., Santana, J. E., de Almeida, Y. G. B., Vilela Dos Santos, P., et al. (2020). Genetic polymorphism in IL17RA induces susceptibility to Toxoplasma gondii infection in Brazilian pregnant women. Acta Tropica, 211, 105594. 10.1016/j.actatropica.2020.105594

Arcangeli, C., Lucarelli, D., Torricelli, M., Sebastiani, C., Ciullo, M., Pellegrini, C., et al. (2021). First survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 genes in sheep reared in Italy and their association with resistance to SRLVs infection. Viruses, 13, 1290. 10.3390/v13071290

Bacci, C., Vismarra, A., Mangia, C., Bonardi, S., Bruini, I., Genchi, M., et al. (2015). Detection of Toxoplasma gondii in free-range, organic pigs in Italy using serological and molecular methods. International Journal of Food Microbiology, 202, 54–56. 10.1016/j.ijfoodmicro.2015.03.002

Bayani, M., Riahi, S.M., Bazrafshan, N., Ray Gamble, H., & Rostami, A. (2019). Toxoplasma gondii infection and risk of Parkinson and Alzheimer diseases: A systematic review and meta-analysis on observational studies. Acta Tropica, 196, 165–171. 10.1016/j.actatropica.2019.05.015

Condoleo, R., Rinaldi, L., Sette, S., & Mezher Z. (2018). Risk assessment of human toxoplasmosis associated with the consumption of pork meat in Italy. Risk Analysis, 38, 1202–1222. 10.1111/risa.12934

Costa, D. F., Fowler, F., Silveira, C., Nóbrega, M. J., Nobrega, H. A. J., Nascimento H.,et al. (2018). Prevalence of Toxoplasma gondii DNA in processed pork meat. Foodborne Pathogens and Diseases, 15, 734–736. 10.1089/fpd.2018.2438

Discontools. (2024, April 18). https://www.discontools.eu/database.html?rid=10663&v=html

Dubey, J. P. (2009). Toxoplasmosis in pigs–The last 20 years. Veterinary Parasitology, 164, 89–103.

Dubey, J. P. (2010). Toxoplasmosis of animals and humans (2nd ed., p. 313). CRC Press, ISBN 978-1-4200-9236-3 (Hardback).

Dubey, J. P., Cerqueira-Cézar, C. K., Murata, F. H. A., Kwok, O. C. H., Hill, D., Yang, Y., et al. (2020). All about Toxoplasma gondii infections in pigs: 2009-2020. Veterinary Parasitology, 288, 109185. 10.1016/j.vetpar.2020.109185

EFSA. (2024, April 18). https://www.efsa.europa.eu/en/topics/topic/parasites-food

Emam, M., Livernois, A., Paibomesai, M., Atalla, H., & Mallard, B. (2019). Genetic and epigenetic regulation of immune response and resistance to infectious diseases in domestic ruminants. Veterinary Clinics of North America: Food Animal Practice, 35, 405–429. 10.1016/j.cvfa.2019.07.002

Fratto, A., Torricelli, M., Sebastiani, C., Ciullo, M., Felici, A., & Biagetti, M. (2024). Survey on resistance occurrence for F4+ and F18+ enterotoxigenic Escherichia coli (ETEC) among pigs reared in Central Italy regions. Veterinary Research Communications, 48, 1279–1284. 10.1007/s11259-023-10287-8

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Hodge, J. M., Coghill, A. E., Kim, Y., Bender, N., Smith-Warner, S.A., Gapstur, S., et al. (2021). Toxoplasma gondii infection and the risk of adult glioma in two prospective studies. International Journal of Cancer, 148, 2449–2456. 10.1002/ijc.33443

Lo´pez-Yglesias, A. H., Camanzo, E., Martin, A. T., Araujo, A. M., & Yarovinsky, F. (2019). TLR11-independent inflammasome activation is critical for CD4+ T cell-derived IFN-γ production and host resistance to Toxoplasma gondii. PLoS Pathogens, 15, e1007872. 10.1371/journal.ppat.1007872

Martin, F. J., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A. G., Barnes, I., et al. (2023). Ensembl. Nucleic Acids Research, 51(D1), D933–D941. 10.1093/nar/gkac958

Mazzone, P., Di Paolo, A., Petrucci, L., Torricelli, M., Corneli, S., Sebastiani, C.,et al. (2023). Evaluation of single nucleotide polymorphisms (SNPs) associated with genetic resistance to bovine paratuberculosis in Marchigiana beef cattle, an Italian native breed. Animals, 13, 587. 10.3390/ani13040587

Montoya, J. G., & Liesenfeld, O. (2004). Toxoplasmosis. Lancet, 363(9425), 1965–1976. 10.1016/S0140-6736(04)16412-X

Mukhopadhyay, D., Arranz-Solís, D., & Saeij, J. P. J. (2020). Influence of the host and parasite strain on the immune response during toxoplasma infection. Frontiers in Cellular and Infection Microbiology, 15, 580425. 10.3389/fcimb.2020.580425

National Center for Biotechnology Information (NCBI). (2024, April 18). https://www.ncbi.nlm.nih.gov/

Pal, M., Berhanu, G., Steinmetz, C. H. D., & Durglishvili, N. (2021). Toxoplasmosis: An emerging and re-emerging zoonosis of global public health concern. American Journal of Infectious Diseases, 9, 32–38. 10.12691/ajidm-9-2-1

Rorman, E., Zamir, C. S., Rilkis, I., & Ben-David, H. (2006). Congenital Toxoplasmosis–prenatal aspects of Toxoplasma gondii infection. Reproductive Toxicology, 21, 458–472. 10.1016/j.reprotox.2005.10.006

Sasai, M., Pradipta, A., & Yamamoto, M. (2018). Host immune responses to Toxoplasma gondii. International Immunology, 30, 113–119. 10.1093/intimm/dxy004

Sequencher® version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI, USA. http://www.-genecodes.com

Stelzer, S., Basso, W., Benavides Silván, J., Ortega-Mora, L. M., Maksimov, P., Gethmann J., et al. (2019). Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food and Waterborne Parasitology, 15, e00037. 10.1016/j.fawpar.2019.e00037

Torricelli, M., Fratto, A., Ciullo, M., Sebastiani, C., Arcangeli, C., Felici, A., et al. (2023). Porcine Reproductive and Respiratory Syndrome (PRRS) and CD163 resistance polymorphic markers: What is the scenario in naturally infected pig livestock in Central Italy? Animals, 13, 2477. 10.3390/ani13152477

Torricelli, M., Sebastiani, C., Ciullo, M., Ceccobelli, S., Chiappini, B., Vaccari, G., et al. (2021). PRNP Polymorphisms in eight local goat populations/breeds from Central and Southern Italy. Animals, 11, 333. 10.3390/ani11020333

Veronesi, F., Ranucci, D., Branciari, R., Miraglia, D., Mammoli, R., & Fioretti, D. P. (2011). Seroprevalence and risk factors for Toxoplasma gondii infection on finishing swine reared in the Umbria region, Central Italy. Zoonoses and Public Health, 58, 178–184. 10.1111/j.1863-2378.2010.01336.x

Wang, Z. D., Wang, S. C., Liu, H. H., Ma, H. Y., Li, Z. Y., Wei, F., et al. (2017). Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: A systematic review and meta-analysis. Lancet HIV, 4, e177–e188. 10.1016/S2352-3018(17)30005-X

WOAH Terrestrial Manual. (2018). Toxoplasmosis. 1–13 (2024, April 18). https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.10.08_TOXO.pdf

Wujcicka, W., Wilczyński, J., Śpiewak, E., & Nowakowska, D. (2018). Genetic modifications of cytokine genes and Toxoplasma gondii infections in pregnant women. Microbial Pathogenesis, 121, 283–292. 10.1016/j.micpath.2018.05.048

Yarovinsky, F. (2014). Innate immunity to Toxoplasma gondii-infection. Nature Reviews Immunology, 14, 109–121. 10.1038/nri3598

Zhang, Y., Li, D., Lu, S., & Zheng, B. (2022). Toxoplasmosis vaccines: What we have and where to go? NPJ Vaccines, 7, 131. 10.1038/s41541-022-00563-0