Chamuangone-enriched rice bran oil ameliorates neurodegeneration in haloperidol-induced Parkinsonian rat model via modulation of neuro-inflammatory mediators and suppression of oxidative stress markers

Main Article Content

Badriyah S. Alotaibi
Uzma Saleem
Aqsa Ahmad
Zunera Chaudhary
Maryam Farrukh
Rana O. Khayat
Ifat Alsharif
Tourki A. S. Baokbah
Aishah E. Albalawi
Norah A. Althobaiti
Muhammad Ajmal Shah
Khairul Anam
Yasmene F. Alanazi
Pharkphoom Panichayupakaranant
Renald Blundell
Ana Sanches Silva


animal behavior, anti-Parkinson, chamuangone, neuro-inflammation, nutraceutical, phytomedicine, rice bran oil


A natural bioactive compound chamuangone extracted from Thai salad Garcinia cowa leaves exhibited robust medicinal properties, targeting central oxidative stress pathways, and having neuroprotective potential. Chamuangone-enriched rice bran oil (CERBO), with 1.97 mg/mL chamuangone, was obtained through green extraction. The study was designed to evaluate the anti-Parkinson’s activity of CERBO in the haloperidol- induced Parkinsonian rat model. Animals were categorized into six groups as control, disease control and treatment groups. Parkinson’s disease (PD)-like symptoms were induced by administration of haloperidol 1 mg/kg, intraperitoneally; CERBO treatment groups received 2.5, 5, and 7.5 mg/kg orally before the administration of haloperidol for 21 days. Neurobehavioral, biochemical, neurochemical, and histopathological studies along with gene expression analysis were performed at the completion of the study. CERBO markedly recover the motor and non-motor PD-like symptoms in treatment groups dose-dependently. The levels of antioxidant enzymes, such as catalase, superoxide dismutase, reduced glutathione, and glutathione peroxidase, increased, while malondialdehyde levels decreased dose-dependently in CERBO-treated groups. CERBO dose-dependent elevations were observed in neurotransmitters (dopamine, serotonin, and noradrenaline). PD-associated specific biomarker (α-synuclein) decreased dose-dependently with downregulation in messenger RNA expression of neuro-inflammatory mediators (interleukin α, interleukin 1β, and tumor necrosis factor-α). Histopathological studies revealed recovery in neuronal loss, formation of Lewy’s bodies, and neurofibrillary tangles in the treatment groups. It was concluded from the data that CERBO possessed good anti-Parkinson’s activity and could be a novel, safe, and effective remedy for the treatment of PD.

Abstract 175 | PDF Downloads 99 HTML Downloads 0 XML Downloads 17


Akhtar M., Rashid S., and Al-Bozom I.A. 2021. PD−L1 immunostaining: what pathologists need to know. Diagnostic Pathol. 16: 1–12. 10.1186/s13000-021-01151-x

Ali M., Saleem U., Anwar F., Imran M., Nadeem H., Ahmad B., Ali T., et al. 2021. Screening of synthetic isoxazolone derivative role in Alzheimer’s disease: computational and pharmacological approach. Neurochem Res. 46: 905–920. 10.1007/s11064-021-03229-w

Andreassen A., Meshul K., and Moore C. 2001. Jørgensen A. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration. J Psychopharmacol. 157: 11–19. 10.1007/s002130100767

Angelova P.R. 2021. Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biol Med. 173: 52–63. 10.1016/j.freeradbiomed.2021.07.003

Asaduzzaman Khan M., Tania M., Zhang D.Z., and Chen H.C. 2010. Antioxidant enzymes and cancer. Chin J Cancer Res. 22(2): 87–92. 10.1007/s11670-010-0087-7

Ben-Shaul Y., BenMoyal-Segal L., Ben-Ari S., Bergman H., and Soreq H. 2006. Adaptive acetylcholinesterase splicing patterns attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Eur J Neurosci. 23: 2915–2922. 10.1111/j.1460-9568.2006.04812.x

Bhangale O., and Acharya R. 2016. Anti-Parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. Adv Pharmacol Sci. 10.1155/2016/9436106

Chabory E., Damon C., Lenoir A., Kauselmann G., Kern H., and Zevnik B. 2009. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Investig. 119: 2074–2085. 10.1172/JCI38940

Chinta J., and Andersen K. 2005. Dopaminergic neurons. Int J Biochem Cell Biol. 37: 942–946. 10.1016/j.biocel.2004.09.009

Chopade P., Chopade N., Zhao Z., Mitragotri S., Liao R., and Chandran V. 2023. Alzheimer’s and Parkinson’s disease therapies in the clinic. Bioeng Transl Med. 8: e10367. 10.1002/btm2.10367

Cummings J., Engesser-Cesar C., Cadena G., and Anderson J. 2007. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res. 177: 232–241. 10.1016/j.bbr.2006.11.042

Dias V., and Junnand M. 2013. Mouradian, the role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3: 461–491. 10.3233/JPD-130230

Godoy P., Ferrari C., and Pitossi J. 2010. Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. J Neuroimmunol. 222: 29–39. 10.1016/j.jneuroim.2010.02.018

Guzman N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., and Schumacker T. 2010. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 468: 696–700. 10.1038/nature09536

Hira S., Saleem U., Anwar F., and Ahmad B. 2018. Antioxidants attenuate isolation-and L-DOPA-induced aggression in mice. Front Pharmacol. 8: 945. 10.3389/fphar.2017.00945

Hira S., Saleem U., Anwar F., Raza Z., and Rehman U. 2020. In silico study and pharmacological evaluation of eplerinone as an anti-Alzheimer’s drug in STZ-induced Alzheimer’s disease model. ACS Omega. 5: 13973–13983. 10.1021/acsomega.0c01381

Jenner P., and Olanow W. 2006. The pathogenesis of cell death in Parkinson’s disease. Neurology. 66: S24–S36. 10.1212/WNL.66.10_suppl_4.S24

Lakshmi B., Sudhakar M., and Prakash S. 2015. Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res. 165: 67–74. 10.1007/s12011-015-0229-3

Law B., Waye M., So W., and Chair S. 2017. Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Int J Mol Sci. 18(7): 1352. 10.3390/ijms18071352

Lowry H. 1951. Protein measurement with the folin phenol reagent. J Biol Chem. 193: 265–275.

Madiha S., Tabassum S., Batool Z., Liaquat L., Sadir S., and Shahzad S. 2017. Assessment of gait dynamics in rotenone-induced rat model of Parkinson’s disease by footprint method. Pak J Pharm Sci. 30.

Nguyen A., Nguyen N., Hoang P., Doan G., and Lee H. 2022. Six new polyoxygenated xanthones from Garcinia cowa and their neuro-protective effects on glutamate-mediated hippocampal neuronal HT22 cell death. Chem. Biodivers 19: e202200376. 10.1002/cbdv.202200376

Nikam S., Nikam P., Ahaley S., and Sontakke A.V. 2009. Oxidative stress in Parkinson’s disease. Indian J. Clin. Biochem. 24(1): 98–101. 10.1007/s12291-009-0017-y

Nottia D., Masciullo M., Verrigni D., Petrillo S., Modoni A., and Rizzo V. 2017. DJ-1 modulates mitochondrial response to oxidative stress: clues from a novel diagnosis of PARK7. Clin Genet. 92: 18–25. 10.1111/cge.12841

Park H., Kam I., Peng H., Chou C., Mehrabani-Tabari A., and Song J. 2022. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson’s disease. Cell. 185: 1943–1959.e21. 10.1016/j.cell.2022.04.020

Pathan S., Jain G., Kumawat S., Katolkar N., and Surana J. 2022. Neuroprotective effects of P-coumaric acid on haloperidol-induced catalepsy through ameliorating oxidative stress and brain dopamine level. J Pharmacol Pharmacother. 13(4): 364–374. 10.1177/0976500X221150837

Paudel R., Thapa R., and Poudel P. 2022. Garcinia cowa Roxb. ex Choisy. In: Belwal T., Bhatt I and Devkota H. (Eds.) Himalayan Fruits and Berries: Bioactive Compounds, Uses and Nutraceutical Potential, Chap. 20. Elsevier, Amsterdam, The Netherlands, pp. 197–203. 10.1016/B978-0-323-85591-4.00041-6

Rahman H., and Eswaraiah M. 2008. Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice: a review. Pharma Tour Art. 1244: 1–12.

Ritthiwigrom T., Laphookhieo S., and Pyne G. 2013. Chemical constituents and biological activities of Garcinia cowa Roxb. Maejo Int J. Sci. Technol. 7(02): 212–231.

Sae-Lim P., Matsunami P., and Panichayupakaranant P. 2022. Chamuangone from Garcinia cowa leaves reduce fat accumulation in Caenorhabditis elegans. Thaksin Univ Online J. (5), INTER-02 (24).

Sae-Lim P., Seetaha S., Tabtimmai L., Suphakun P., Kiriwan D., and Panichayupakaranant P. 2020. Chamuangone from Garcinia cowa leaves inhibits cell proliferation and migration and induces cell apoptosis in human cervical cancer in vitro. J Pharm Pharmacol. 72: 470–480. 10.1111/jphp.13216

Sae-Lim P., Yuenyongsawad S., and Panichayupakaranant P. 2019. Chamuangone-enriched Garcinia cowa leaf extract with rice bran oil: extraction and cytotoxic activity against cancer cells. Pharmacogn Mag. 15(61): 183–188. 10.4103/pm.pm_472_18

Sakunpak A., Matsunami K., and Otsuka H., Panichayupakaranant P. 2017. Isolation of chamuangone, a cytotoxic compound against Leishmania major and cancer cells from Garcinia cowa leaves and its HPLC quantitative determination method. Cancer Res. 6: 38–45. 10.6000/1929-2279.2017.06.02.3

Sakunpak A., and Panichayupakaranant P. 2012. Antibacterial activity of Thai edible plants against gastrointestinal pathogenic bacteria and isolation of a new broad spectrum antibacterial polyisoprenylated benzophenone, chamuangone. Food Chem. 130: 826–31. 10.1016/j.foodchem.2011.07.088

Saleem U., Akhtar R., Anwar F., Shah MA., Chaudary Z., Ayaz M., et al. 2021. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis. 36: 889–900. 10.1007/s11011-021-00683-x

Saleem U., Chauhdary Z., Raza Z., Shah S., Rahman U., and Zaib P. 2020. Anti-Parkinson’s activity of tribulus terrestris via modulation of AChE, α-Synuclein, TNF-α, and IL-1β. ACS Omega. 5: 25216–25227. 10.1021/acsomega.0c03375

Saleem U., Shehzad A., Shah S., Raza Z., Shah A., and Bibi S. 2014. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab. Brain Dis. 36: 1231–1251. 10.1007/s11011-021-00707-6

Santambrogio P., Dusi S., Guaraldo M., Rotundo I., Broccoli V., and Garavaglia B. 2015. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobio Dis. 81: 144–153. 10.1016/j.nbd.2015.02.030

Sarma A., Sarmah P., Kashyap D., and Kalita A. 2014. Evaluation of nutraceutical properties and antioxidant activity of Garcinia cowa Roxb. Ex choisy fruits found in Assam (India). World J Pharm Pharmaceut Sci. 3: 853–853.

Selvakumar P., Janakiraman U., Essa M., Thenmozhi J., and Manivasagam T. 2014. Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/ probenecid mouse model of Parkinson’s disease. Brain Res. 1585: 23–36. 10.1016/j.brainres.2014.03.010

Sharma N., and Bafna P. 2012. Effect of Cynodon dactylon on rotenone-induced Parkinson’s disease. Orient Pharm Exp Med. 12: 167–175. 10.1007/s13596-012-0075-1

Singh A., Kukreti R., Saso L., and Kukreti S. 2019. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 24(8): 1583. 10.3390/molecules24081583

Stern B., d’Alencar M., Uscapi L., Gubitoso D., Roque C., and Helene F. 2018. Goalkeeper game: a new assessment instrument in neurology showed higher predictive power than moca for gait performance in people with Parkinson’s disease. Bio Rxiv. 400457. 10.1101/400457

Tillerson L., and Miller W. 2003. Grid performance test to measure behavioral impairment in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods. 123: 189–200. 10.1016/S0165-0270(02)00360-6

Tysnes B., and Storstein A. 2017. Epidemiology of Parkinson’s disease. J Neural Transm. 124: 901–905. 10.1080/09603123.2022.2047903

Uddin S., Al Mamun A., Asaduzzaman M., Hosn F., Sufian A., and Takeda S. 2018. Spectrum of disease and prescription pattern for outpatients with neurological disorders: an empirical pilot study in Bangladesh. J Neural Transm. 25: 25–37. 10.1159/000481812

Uwishema O., Onyeaka H., Badri R., Yücel N., Korkusuz K., and Ajagbe O. 2022. The understanding of Parkinson’s disease through genetics and new therapies. Brain Behav. 12: e2577. 10.1002/brb3.2577

Wahyuni S., Shaari S., Stanslas J., Lajis N., and Hamidi D. 2015. Cytotoxic compounds from the leaves of Garcinia cowa Roxb. J Appl Pharm Sci. 5: 6–011. 10.7324/JAPS.2015.50202

Wang S.Y. 2010. Correlation of antioxidants and antioxidant enzymes to oxygen radical scavenging activities in berries. In: Seeram N.P., and Stoner G.D. (Eds.) Berries and Cancer Prevention. Springer New York, NY, pp. 79–97. 10.1007/978-1-4419-7554-6_4.

Wang X., Ke L., Chen M., Liu S., and Yu Duan L. 2022. The side effects of dopamine receptor agonist drugs in Chinese prolactinoma patients: a cross sectional study. BMC Endocr Disord. 22: 97. 10.1186/s12902-022-01009-3