Molecular docking and in vivo studies of liquiritin against acute myocardial infarction via TLR4/MyD88/NF-κB signaling

Main Article Content

Peng Zhou
An-lu Shen
Pei-pei Liu
Shu-shu Wang
Liang Wang


acute myocardial infarction, liquiritin, molecular docking, TLR4/MyD88/NF-κB signaling


Licorice (Glycyrrhiza glabra L.) is an essential herb in Chinese medicine, as well as a common ingredient in health foods and natural sweeteners. Liquiritin, the primary constituent of licorice, possesses a wide range of pharmacological and biological properties. This research aims to study the protective mechanism of liquiritin in the myocardium. The potential therapeutic efficacy of liquiritin against acute myocardial infarction (AMI) was tested using molecular docking and verified using an AMI rat model caused by the ligation of the LAD coronary artery. Molecular docking between liquiritin and toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) was predicted using SystemsDock. Then, for experimental validation, in vivo studies were employed. Rats with the AMI model established by ligation of left anterior descending coronary artery were divided into four groups—sham group, model group, captopril group, and liquiritin group. LVSP, LVEDP, +dp/dtmax, and -dp/dtmax were detected and analyzed. HE and Masson staining were used to observe the pathological changes. The protein expressions of TLR4, MyD88, and nuclear factorκB p65 (NF-κB p65) were detected by Western blotting. Molecular docking showed that liquiritin may act on the TLR4 and MyD88, and, therefore, liquiritin was predicted to exert anti-inflammatory effects by regulating the TLR4/MyD88 signaling pathway. Liquiritin improved LVSP, +dp/dtmax, -dp/dtmax, and LVEDP levels, and alleviated pathological changes and cardiac fibrosis. Further study found that liquiritin could decrease the overexpression of TLR4, MyD88, and NF-κB, which validated the molecular docking study. Hence, liquiritin ameliorates AMI by reducing inflammation, and blocking TLR4/MyD88/NF-κB signaling. These results indicate that liquiritin as a potential compound could alleviate AMI and broaden its application.

Abstract 536 | PDF Downloads 119 HTML Downloads 215 XML Downloads 120 Corrigendum Downloads 14


Ahmed-Farid, O.A., Haredy, S.A., Niazy, R.M., Linhardt, R.J. and Warda, M., 2019. Dose-dependent neuroprotective effect of oriental phyto-derived glycyrrhizin on experimental neuro-terminal norepinephrine depletion in a rat brain model. Chemico-Biological Interactions 308: 279–287. 10.1016/j.cbi.2019.05.045

Amosse, J., Martinez, M.C. and Le Lay, S., 2017. Extracellular vesicles and cardiovascular disease therapy. Stem Cell Investigation 4: 102. 10.21037/sci.2017.11.07

Choy, K.W., Murugan, D., Leong, X.F., Abas, R., Alias, A. and Mustafa, M.R., 2019. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NF-κB) signaling in cardiovascular diseases: a mini review. Frontiers in Pharma-cology 10: 1295. 10.3389/fphar.2019.01295

Davidson, S.M., Ferdinandy, P., Andreadou, I., Bøtker, H.E., Heusch, G., Ibáñez, B., Ovize, M., Schulz, R., Yellon, D.M., Hausenloy, D.J., Garcia-Dorado, D. and CARDIOPROTECTION COST Action (CA16225), 2019. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. Journal of the American College of Cardiology 73(1): 89–99. 10.1016/j.jacc.2018.09.086

Hally, K.E., La Flamme, A.C., Larsen, P.D. and Harding, S.A., 2017. Platelet toll-like receptor (TLR) expression and TLR-mediated platelet activation in acute myocardial infarction. Thrombosis Research 158: 8–15. 10.1016/j.thromres.2017.07.031

He, J., Han, S., Li, X.X., Wang, Q.Q., Cui, Y. and Chen, Y., 2019. Diethyl blechnic exhibits anti-inflammatory and antioxidative activity via the TLR4/MyD88 signaling pathway in LPS-stimulated RAW264.7 cells. Molecules 24: 4502. 10.3390/molecules24244502

Hernandez-Resendiz, S., Chinda, K., Ong, S.B., Cabrera-Fuentes, H., Zazueta, C. and Hausenloy, D.J., 2018. The role of redox dys-regulation in the inflammatory response to acute myocardial ischaemia-reperfusion injury-adding fuel to the fire. Current Medicinal Chemistry 25(11): 1275–1293. 10.2174/0929867324666170329100619

Horikoshi, T., Nakamura, T., Yoshizaki, T., Watanabe, Y., Uematsu, M., Kobayashi, T., Nakamura, K., Saito, Y., Obata, J.E. and Kugiyama, K., 2021. Impact of persistent endothelial dysfunction in an infarct-related coronary artery on future major adverse cardiovascular event occurrence in STEMI survivors. Heart and Vessels 36(4): 472–482. 10.1007/s00380-020-01723-9

Hsin, K.Y., Matsuoka, Y., Asai, Y., Kamiyoshi, K., Watanabe, T., Kawaoka, Y. and Kitano, H., 2016. systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Research 44(W1): W507–W513. 10.1093/nar/gkw335

Huang, Z., Sheng, Y., Chen, M., Hao, Z., Hu, F. and Ji, L., 2018. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicology and Applied Pharmacology 355: 18–27. 10.1016/j.taap.2018.06.014

Jiang, M., Zhao, S., Yang, S., Lin, X., He, X. and Wei, X., 2020. An “essential herbal medicine”-licorice: a review of phytochemicals and its effects in combination preparations. Journal of Ethno-pharmacology 249: 112439. 10.1016/j.jep.2019.112439

Krga, I., Milenkovic, D., Morand, C. and Monfoulet, L.E., 2016. An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food Function 7: 3656–3676. 10.1039/C6FO00596A

Kwon, Y.J., Son, D.H., Chung, T.H. and Lee, Y.J., 2020. A review of the pharmacological efficacy and safety of Licorice root from corroborative clinical trial findings. Journal of Medicinal Food 23(1): 12–20. 10.1089/jmf.2019.4459

Lin, M., Liu, X., Zheng, H., Huang, X., Wu, Y., Huang, A., Zhu, H., Hu, Y., Mai, W. and Huang, Y., 2020. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Research & Therapy 11(1): 22. 10.1186/s13287-019-1544-y

Liu, L., Gan, S., Li, B., Ge, X., Yu, H. and Zhou, H., 2019. Fisetin alleviates atrial inflammation, remodeling, and vulnerability to atrial fibrillation after myocardial infarction. International Heart Journal 60: 1398–1406. 10.1536/ihj.19-131

Mian, M.O.R., He, Y., Bertagnolli, M., Mai-Vo, T.A., Fernandes, R.O. and Boudreau, F., 2019. TLR (Toll-Like Receptor) 4 antagonism prevents left ventricular hypertrophy and dysfunction caused by neonatal hyperoxia exposure in rats. Hypertension 74: 843–853. 10.1161/HYPERTENSIONAHA.119.13022

Mo, J., Zhou, P., Chu, Z., Zhao, Y. and Wang, X., 2022. Liquiritin attenuates angiotensin II-induced cardiomyocyte hypertrophy via ATE1/TAK1-JNK1/2 pathway. Evidence-Based Complemen-tary and Alternative Medicine 2022: 7861338. 10.1155/2022/7861338

Mou, S.Q., Zhou, Z.Y., Feng, H., Zhang, N., Lin, Z., Aiyasiding, X., Li, W.J., Ding, W., Liao, H.H., Bian, Z.Y. and Tang, Q.Z., 2021. Liquiritin attenuates lipopolysaccharides-induced cardiomyocyte injury via an AMP-activated protein kinase-dependent signaling pathway. Frontiers in Pharmacology 12: 648688. 10.3389/fphar.2021.648688

Mozaffarian, D. and Wu, J.H.Y., 2018. Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways. Circulation Research 122(2): 369–384. 10.1161/CIRCRESAHA.117.309008

Ohto, U., Fukase, K., Miyake, K. and Shimizu, T., 2012. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proceedings of the National Academy of Sciences of the United States of America 109(19): 7421–7426. 10.1073/pnas.1201193109

Ojha, S.K., Sharma, C., Golechha, M.J., Bhatia, J., Kumari, S. and Arya, D.S., 2015. Licorice treatment prevents oxidative stress, restores cardiac function, and salvages myocardium in rat model of myocardial injury. Toxicology and Industrial Health 31(2): 140–152. 10.1177/0748233713491800

Raj, P., McCallum, J.L., Kirby, C., Grewal, G., Yu, L., Wigle, J.T. and Netticadan, T., 2017. Effects of cyanidin 3-O-glucoside on cardiac structure and function in an animal model of myocardial infarction. Food Function 8: 4089–4099. 10.1039/C7FO00709D

Sinnecker, D., Dommasch, M., Steger, A., Berkefeld, A., Hoppmann, P., Müller, A., Gebhardt, J., Barthel, P., Hnatkova, K., Huster, K.M., Laugwitz, K.L., Malik, M. and Schmidt, G., 2016. Expiration-triggered sinus arrhythmia predicts outcome in survivors of acute myocardial infarction. Journal of the American College of Cardiology 67(19): 2213–2220. 10.1016/j.jacc.2016.03.484

Snyder, G.A., Cirl, C., Jiang, J., Chen, K., Waldhuber, A., Smith, P., Römmler, F., Snyder, N., Fresquez, T., Dürr, S., Tjandra, N., Miethke, T. and Xiao, T.S., 2013. Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 110(17): 6985–6990. 10.1073/pnas.1215770110

Sun, Y.X., Tang, Y., Wu, A.L., Liu, T., Dai, X.L., Zheng, Q.S. and Wang, Z.B., 2010. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. Journal of Asian Natural Products Research 12(12): 1051–1060. 10.1080/10286020.2010.535520

Sun, Z.G., Zhao, T.T., Lu, N., Yang, Y.A. and Zhu, H.L., 2019. Research progress of glycyrrhizic acid on antiviral activity. Mini Reviews in Medicinal Chemistry 19(10): 826–832. 10.2174/1389557519666190119111125

Thu, V.T., Yen, N.T.H. and Ly, N.T.H., 2021. Liquiritin from Radix Glycyrrhizae protects cardiac mitochondria from hypoxia/reoxy-genation damage. Journal of Analytical Methods in Chemistry 2021: 1857464. 10.1155/2021/1857464

Wang, L., Shi, H., Huang, J.L., Xu, S. and Liu, P.P., 2020. Linggui Zhugan decoction inhibits ventricular remodeling after acute myocardial infarction in mice by suppressing TGF-β1/Smad signaling pathway. Chinese Journal of Integrative Medicine 26(5): 345–352. 10.1007/s11655-018-3024-0

Wei, F., Jiang, X., Gao, H.Y. and Gao, S.H., 2017. Liquiritin induces apoptosis and autophagy in cisplatin (DDP)-resistant gastric cancer cells in vitro and xenograft nude mice in vivo. International Journal of Oncology 51(5): 1383–1394. 10.3892/ijo.2017.4134

Yamagata, K., 2019. Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease. Current Pharmaceutical Design 25(22): 2443–2458. 10.2174/1381612825666190722100504

Yang, J., Zhang, F., Shi, H., Gao, Y., Dong, Z., Ma, L., Sun, X., Li, X., Chang, S., Wang, Z., Qu, Y., Li, H., Hu, K., Sun, A. and Ge, J., 2019. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB Journal 33(12): 14410–14422. 10.1096/fj.201900115RR

Yang, Y., Lv, J., Jiang, S., Ma, Z., Wang, D., Hu, W., Deng, C., Fan, C., Di, S., Sun, Y. and Yi, W., 2016. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death & Disease 7(5): e2234. 10.1038/cddis.2016.140

Yousufuddin, M., Takahashi, P.Y., Major, B., Ahmmad, E., Al-Zubi, H., Peters, J., Doyle, T., Jensen, K., Al Ward, R.Y., Sharma, U., Seshadri, A., Wang, Z., Simha, V. and Murad, M.H., 2019. Association between hyperlipidemia and mortality after incident acute myocardial infarction or acute decompensated heart failure: a propensity score matched cohort study and a meta-analysis. BMJ Open 9(12): e028638. 10.1136/bmjopen-2018-028638

Zhang, Y., Zhang, L., Zhang, Y., Xu, J.J., Sun, L.L. and Li, S.Z., 2016. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway. Biomedicine & Pharmacotherapy 84: 1337–1349. 10.1016/j.biopha.2016.10.036

Zhou, P., Hua, F., Wang, X. and Huang, J.L., 2020. Therapeutic potential of IKK-β inhibitors from natural phenolics for inflammation in cardiovascular diseases. Inflammopharmacology 28: 19–37. 10.1007/s10787-019-00680-8