Environmental impact of the main household cooking systems—A survey
Main Article Content
Keywords
clean cooking, cooking appliances, cooking fuels, cooking systems, environmental impacts, life cycle assessment, PEF standard method, ReCiPe 2016 standard method
Abstract
The food cooking energy may represent the primary hotspot in the cradle-to-grave life cycle of several foods and drinks. It is mainly affected by the type of food and its cookery method, cooking appliance and the fuel selected as well as the number of portions to be cooked. The primary aim of this survey was to demonstrate the basic characteristics of the main cooking methods, appliances, and fuels as well as energy required for some key foods. The secondary aim was to assess the environmental impacts of a generic cooking system as a function of few household cookers fueled by different fuels (i.e., firewood, charcoal, coal, natural gas, liquefied petroleum gas, kerosene and biogas) and electricity in the Italian scenario by using the ReCiPe 2016 and product environmental footprint (PEF) standard methods and Ecoinvent v. 3.7 database. A functional unit equal to per capita useful energy delivered to the pot for cooking (1.41 gigajoule [GJ]) in 27 European Union countries in 2019 was used as the basis of comparison. The use of natural gas resulted in minimum impact in nine of the 18 mid-point impact categories of ReCiPe 2016 method and two damage categories (human health and ecosystem quality) with a minimum overall weighted damage score (OWDSR) of ~5 Pt. Thus, such a cookstove appeared to be more apt to minimize both indoor and outdoor air pollution. Even if the electric cookstove yielded a greater OWDSR (8.6 Pt) because the Italian electricity grid mix was mainly based on fossil sources, it was possible to forecast that new-generation, smart cooktops driven by hydro- and wind-power electricity would minimize OWDSR to as low as 0.9 and 1.4 Pt, respectively, thus not only avoiding the consumption of any fossil energy source but also improving people’s health.
References
Afrane G. and Ntiamoah A. 2011. Comparative life cycle assessment of charcoal, biogas, and liquefied petroleum gas as cooking fuels in Ghana. J Indus Ecol. 15(4):539–549. 10.1111/j.1530-9290.2011.00350.x
Afrane G. and Ntiamoah A. 2012. Analysis of the life-cycle costs and environmental impacts of cooking fuels used in Ghana. Appl Energy. 98:301–306. 10.1016/j.apenergy.2012.03.04
Anozie A.N., Bakare A.R., Sonibare J.A., and Oyebisi T.O. 2007. Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria. Energy. 32:1283–1290. 10.1016/j.energy.2006.07.004
Appropedia. 2008. Ashden Awards. CleanCook ethanol stove. Available at: https://www.appropedia.org/CleanCook_ethanol_stove (accessed: 19 Jan 2022).
Apurva. 2016. Tandoors, burning of solid waste adding to dirty Delhi air: IIT Study. Indian Express. Available at: https://indianexpress.com/article/india/india-news-india/tandoors-burning-of-solid-waste-adding-to-dirty-delhi-air-iit-study/ (accessed: 13 Dec 2021).
Arenas J.M. 2007. Design, development and testing of a portable parabolic solar kitchen. Renew Energy. 32:257–266. 10.1016/j.renene.2006.01.013
Aro E.M. 2016. From first generation biofuels to advanced solar biofuels. Ambio. 45(Suppl 1):S24–S31. 10.1007/s13280-015-0730-0
Barratt N. 2021. Different oven types explained! Available at: https://www.canstarblue.co.nz/appliances/ovens/different-types-of-ovens-explained/ (accessed: 2 Dec 2021).
Bedoić R., Ćosić B., Pukšec T., and Duić N. 2020. Anaerobic digestion of agri-food by-products. In Holden N.M., Wolfe M.L., Ogejo J.A., and Cummins E.J. (Eds.) Introduction to Biosystems Engineering. American Society of Agricultural and Biological Engineers (ASABE) in association with Virginia Tech, Blacksburg, VA, pp. 1–23. Available at: https://vtechworks.lib.vt.edu/bitstream/handle/10919/93254/Anaerobic_Digestion.pdf?sequence=27&isAllowed=y (accessed: 11 Dec 2021). 10.21061/IntroBiosystemsEngineering/Anerobic_Digestion
Benka-Coker M.L., Tadele W., Milano A., Getaneh D., and Stokes H. 2018. A case study of the ethanol CleanCook stove intervention and potential scale-up in Ethiopia. Energy Sustain Develop. 46:53–64. 10.1016/j.esd.2018.06.009
Bertrand E., Vandenberghe L.P.S., Soccol C.R., Sigoillot J.C., and Faulds C. 2016. First generation bioethanol. In: Soccol C., Brar S., Faulds C., and Ramos L. (Eds.) Green fuels technology. Green Energy and Technology. Springer, Cham, Denmark. 10.1007/978-3-319-30205-8_8
Bevilacqua M., Braglia M., Carmignani G., and Zammori F.A. 2007. Life cycle assessment of pasta production in Italy. J Food Qual. 30:932–952. 10.1111/j.1745-4557.2007.00170.x
British Standards Institution (BSI). 2011. PAS 2050:2011. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards Institution, London.
Carlsson-Kanyama A. and Boström-Carlsson K. 2001. Energy Use for Cooking and Other Stages in the Life Cycle of Food. A Study of Wheat, Spaghetti, Pasta, Barley, Rice, Potatoes, Couscous and Mashed Potatoes. Report No. 160. Stockhoms Universitet, Stockholm, Sweden.
Cibelli M., Cimini A., Cerchiara G., and Moresi M. 2021. Carbon footprint of different methods of coffee preparation. Sustain Prod Consump. 27:1614–1625. 10.1016/j.spc.2021.04.004
Cimini A., Cibelli M., and Moresi M. 2019. Cradle-to-grave carbon footprint of dried organic pasta: Assessment and potential mitigation measures. J Sci Food Agricul. 99:5303–5318 10.1002/jsfa.9767.
Cimini A., Cibelli M., and Moresi M. 2020. Development and assessment of a home eco-sustainable pasta cooker. Food Bioprod Proc. 122:291–302. 10.1016/j.fbp.2020.05.009
Cimini A., Cibelli M., and Moresi M. 2021a. Environmental impact of pasta. In Galanakis C. (Ed.) Environmental Impact of Agro-Food Industry and Food Consumption. Chp. 5; pp. 101–127. Academic Press, San Diego, CA. 10.1016/B978-0-12-821363-6.00005-9
Cimini A., Cibelli M., Taddei A.R., and Moresi M. 2021b. Effect of cooking temperature on cooked pasta quality and sustainability. J Sci Food Agricul. 101:4946–4958. 10.1002/jsfa.11138
Cimini A. and Moresi M. 2017. Energy efficiency and carbon footprint of home pasta cooking appliances. J Food Eng. 204:8–17. 10.1016/j.jfoodeng.2017.01.012
Climate Technology Center & Network (CTCN). 2017. Ethanol cook stoves. Available at: https://www.ctc-n.org/technologies/ethanol-cook-stoves (accessed: 19 Jan 2022).
Costagliola M.A., De Simio L., Iannaccone S., and Prati M.V. 2013. Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends. Appl Energy. 111:1162–1171. 10.1016/j.apenergy.2012.09.042
Darlami H.B., Ale B.B., and Pokharel G.R. 2019. Experimental analysis of thermal efficiency of mud improved cookstove with variation of different parameters and economic analysis. J Inst Eng. 15(3):385–392. 10.3126/jie.v15i3.32228
Ecoinvent. (2020) Ecoinvent v3.7.1. Available at: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-7-1/ (accessed: 11 Feb 2022).
Elduque D., Javierre C., Pina C., Martínez E., and Jiménez E. 2014. Life cycle assessment of a domestic induction hob: Electronic boards. J Clean Prod. 76:74–84. 10.1016/j.jclepro.2014.04.009
European Commission (EC). 2010. Commission Regulation (EU) No. 97/2010, “Entering a name in the register of traditional specialities guaranteed [Pizza Napoletana (TSG)].” Off J EU. L 34, 05 February. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L:2010:034:FULL (accessed: 13 Dec 2021).
European Commission (EC). 2018a. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off J EU. L 328/82, 21 December. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=fr (accessed: 24 Jan 2022).
European Commission (EC). 2018b. Product Environmental Footprint Category Rules Guidance—Version 6.3. European Commission, Brussels, Belgium. Available at: https://eplca.jrc.ec.europa.eu/permalink/PEFCR_guidance_v6.3-2.pdf (accessed: 18 Dec 2021).
Eurostat. 2021a. Energy consumption in households. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households#Energy_products_used_in_the_residential_sector (accessed: 20 Nov 2021).
Eurostat. 2021b. Population projections in the EU. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=497115#Population_projections (accessed: 4 Dec 2021).
Fantke P., Evans J., Hodas N., Apte J., Jantunen M., Jolliet O., and McKone T.E. 2016. Health impacts of fine particulate matter. In Frischknecht R. and Jolliet O. (Eds.) Global Guidance for Life Cycle Impact Assessment Indicators. Vol. 1, pp 76–99. UNEP/SETAC Life Cycle Initiative, Paris, France.
Favi C., Germani M., Landi D., Mengarelli M., and Rossi M. 2018. Comparative life cycle assessment of cooking appliances in Italian kitchens. J Clean Prod. 186:430–449. 10.1016/j.jclepro.2018.03.140
Florida Power & Light Co. 2003. Natural gas specs sheet. Available at: https://www.naesb.org/pdf2/wgq_bps100605w2.pdf (accessed: 19 Jan 2022).
Foster C., Green K., Blea M., Dewick P., Evans B., Flynn A., and Mylan J. 2006. Environmental Impacts of Food Production and Consumption. Report to the Department of the Environment, Food, and Rural Affairs (DEFRA). Manchester Business School London.
Francescato V., Antonini E., and Zuccoli Bergomi L. 2008. Wood Fuels Handbook. Italian Agroforestry Energie Association (AIEL), Legnaro (PD), Italy. Available at: https://www.yumpu.com/pt/document/read/2571080/wood-fuels-handbook-biomasstradecentres (accessed: 6 Dec 2021).
Frankowska A., Schmidt Rivera X., Bridle S.L., Kluczkovski A., da Silva J., Martins C., Rauber F., Levy R.B., Cook J., and Reynolds C. 2020. How home cooking methods and appliances affect the GHG emissions of food. Nature Food. 1:787–791. 10.1038/s43016-020-00200-w
Fullerton D.G., Bruce N., and Gordon S.B. 2008. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans Royal Soc Trop Med Hygiene. 102:843–851. 10.1016/j.trstmh.2008.05.028
Gould C.F. and Urpelainen J. 2018. LPG as a clean cooking fuel: Adoption, use, and impact in rural India. Energy Policy. 122:395–408. 10.1016/j.enpol.2018.07.042
Hager T.J. and Morawicki R. 2013. Energy consumption during cooking in the residential sector of developed nations: A review. Food Policy. 40:54–63. 10.1016/j.foodpol.2013.02.003
Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M., Zijp M., Hollander A., and van Zelm R. 2017. ReCiPe 2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess. 22:138–147. 10.1007/s11367-016-1246-y
Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Verones F., Vieira M.D.M., Hollander A., Zijp M., van Zelm R., and Stam G. 2016. ReCiPe2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint LevelS. Report I: Characterization. RIVM Report 2016. National Institute for Public Health and the Environment, Bilthoven, the Netherlands. 10.1007/s11367-016-1246-y
Igo S.W., Kokou N., Compaoré A., Kalifa P., Sawadogo G.L., and Namoano D. 2020. Experimental analysis of the thermal performance of a metal fired-wood oven. Iranian (Iranica) J Energy Environ. 11(3):225–230. 10.5829/IJEE.2020.11.03.08
International Energy Agency (IEA). 2018. World energy outlook 2018. Available at: https://iea.blob.core.windows.net/assets/77ecf96c-5f4b-4d0d-9d93-d81b938217cb/World_Energy_Outlook_2018.pdf (accessed: 13 Dec 2021).
International Energy Agency (IEA). 2019. World energy outlook 2019. Available at: https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926-35307b418cdb/WEO2019-free.pdf (accessed: 13 Dec 2021).
International Energy Agency (IEA) and the World Bank. 2014. Sustainable Energy for All 2013–2014: Global Tracking Framework Report. World Bank, Washington, DC. 10.1596/978-1-4648-0200-3.
International Organization for Standardization (ISO). 2006a. 14040-Environmental Management e Life Cycle Assessment—Principles and Framework. International Organization for Standardization, Genève, CH.
International Organization for Standardization (ISO). 2006b. 14044-Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization, Genève, CH.
International Renewable Energy Agency (IRENA). 2017. Biogas for Domestic Cooking: Technology Brief. International Renewable Energy Agency, Abu Dhabi. Available at: https://irena.org/-/media/Files/IRENA/Agency/Publication/2017/Dec/IRENA_Biogas_for_domestic_cooking_2017.pdf (accessed: 1 Jan 2022).
Iodice P., Langella G., and Amoresano A. 2018. Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Appl Therm Eng. 130:1081–1089. 10.1016/j.applthermaleng.2017.11.090
Jeswani H.K., Chilvers A., and Azapagic A. 2020. Environmental sustainability of biofuels: A review. Proc Royal Soc A. 476:20200351. 10.1098/rspa.2020.0351
Jungbluth N., Kollar M., and Koß V. 1997. Life cycle inventory for cooking. Some results for the use of liquefied petroleum gas and kerosene as cooking fuels in India. Energy Policy. 25(5):471–480. 10.1016/S0301-4215(97)00022-0
Kang Q., Appels L., Tan T., and Dewil R. 2014. Bioethanol from lignocellulosic biomass: Current findings determine research priorities. Sci World J. 2014:Arte ID 298153, 13 p. 10.1155/2014/298153
Lakshmi S., Chakkaravarthi A., Subramanian R., and Singh V. 2007. Energy consumption in microwave cooking of rice and its comparison with other domestic appliances. J Food Eng. 78(2):715–722. 10.1016/j.jfoodeng.2005.11.011
Landi D., Consolini A., Germani M., and Favi C. 2019. Comparative life cycle assessment of electric and gas ovens in the Italian context: An environmental and technical evaluation. J Clean Prod. 221:189–201. 10.1016/j.jclepro.2019.02.196
Lima F.D.M., Pérez-Martínez P.J., de Fatima Andrade M., Kumar P., and de Miranda R.M. 2020. Characterization of particles emitted by pizzerias burning wood and briquettes: A case study at Sao Paulo, Brazil. Environ Sci Pollution Res. 27:35875–35888. 10.1007/s11356-019-07508-6.
Makavana J.M., Agravat V.V., Balas P.R., Makwana P.J., and Vyas V.G. 2018. Engineering properties of various agricultural residue. Int J Curr Microbiol App. Sci. 7(6):2362–2367. 10.20546/ijcmas.2018.706.282
Manfredi S., Allacker K., Chomkhamsri K., Pelletier N., and Maia de Souza D. 2012. Product Environmental Footprint (PEF) Guide. European Commission, Ispra, Italy.
Manhiça F.A., Lucas C., and Richards T. 2012. Wood consumption and analysis of the bread baking process in wood-fired bakery ovens. Appl Ther Eng. 47:63–72. 10.1016/j.applthermaleng.2012.03.007
Manzetti S. and Andersen O. 2015. A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel. 140:293–301. 10.1016/j.fuel.2014.09.101
Martínez-Gómez J., Ibarra D., Villacis S., Cuji P., and Cruz P.R. 2016. Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program. Food Policy. 59:88–102. 10.1016/j.foodpol.2015.12.010
McGee H. 2004. On Food and Cooking – The Science and Lore of the Kitchen. Scribner, New York, NY.
Mehetre S.A., Panwar N.L., Sharma D., and Kumar H. 2017. Improved biomass cookstoves for sustainable development: A review. Renew Sustain Energy Rev. 73:672–687. 10.1016/j.rser.2017.01.150
Morelli B., Cashman S., Rodgers M. 2017. Life Cycle Assessment of Cooking Fuel Systems in India, China, Kenya and Ghana. Report No. EPA/600/R-17/225. US Environmental Protection Agency, Washington, DC. Available at: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryId=339679 (accessed: 30 Dec 2021).
Mukunda H.S. 2009. Understanding Combustion, 2nd edition. Orient Blackswan, New Delhi, India.
Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D., Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., and Zhang H. 2013. Anthropogenic and natural radiative forcing. Ch. 8. In Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 731–738. Cambridge University Press, Cambridge, UK. Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (accessed: 18 Dec 2021).
Nielsen H. 2003. Cooking food in ovens and stoves. Available at: http://www.lcafood.dk/ (accessed: 25 Nov 2021).
Okino J., Komakech A.J., Wanyama J., Ssegane H., Olomo E., and Omara T. 2021. Performance characteristics of a cooking stove improved with sawdust as an insulation material. J Renew Energy, vol. 2021, Art ID 9969806: 1–12. 10.1155/2021/9969806
Okoko A., Wymann von Dach S., Reinhard J., Kiteme B., and Owuor S. 2018. Life cycle costing of alternative value chains of biomass energy for cooking in Kenya and Tanzania. J Renew Energy. 2018(Article ID 3939848):1–12. 10.1155/2018/3939848
Okusanya M.A., Ibrahim G.W., and Ogunlade C.B. 2019. The use of ethanol gel cook-stove as a more accessible alternative cooking energy. Int J Eng Sci Invent. 8(10):15–22. www.ijesi.org
Pandey S., Goswami S., Saini P., Powar S., and Dhar A. 2021. Hybrid electrical-solar oven: A new perspective. In Tyagi H., Chakraborty P.R., Powar S., Agarwal A.K. (eds.) New Research Directions in Solar Energy Technologies. Energy, Environment, and Sustainability, pp. 237–255. Springer, Singapore. 10.1007/978-981-16-0594-9_8
Pope D., Johnson M., Fleeman N., Jagoe K., Duarte R., Maden M., Ludolph R., Bruce N., Shupler M., Adair-Rohani H., and Lewis J. 2021. Are cleaner cooking solutions clean enough? A systematic review and meta-analysis of particulate and carbon monoxide concentrations and exposures. Environ Res Lett. 16:083002. 10.1088/1748-9326/ac13ec
Pratiti R., Vadala D., Kalynych Z., and Sud P. 2020. Health effects of household air pollution related to biomass cook stoves in resource limited countries and its mitigation by improved cookstoves. Environ Res. 186:109574. 10.1016/j.envres.2020.109574
Probert D. and Newborough M. 1985. Designs, thermal performances and other factors concerning cooking equipment and associated facilities. Appl Energy. 21:81–222. 10.1016/0306-2619(85)90069-8
Rajvanshi A.K., Patil S.M., and Mendoca B. 2004. Development of Stove Running on Low Ethanol Concentration. Nimbkar Agricultural Research Institute (NARI), Maharashtra, India.
Rasoulkhani M., Ebrahimi-Nik M., Abbaspour-Fard M.H., and Rohani A. 2018. Comparative evaluation of the performance of an improved biomass cookstove and the traditional stoves of Iran. Sustain Environ Res. 28(6):438–443. 10.1016/j.serj.2018.08.001
Rosenthal J., Quinn A., Grieshop A.P., Pillarisetti A., and Glass R.I. 2018. Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals. Energy Sustain Develop. 42:152–159. 10.1016/j.esd.2017.11.003
Sala S., Cerutti A.K., and Pant R. 2018. Development of a Weighting Approach for the Environmental Footprint. Publications Office, European Union, Luxembourg. 10.2760/945290. Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC106545 (accessed: 18 Dec 2021).
Sala S., Crenna E., Secchi M., and Pant R. 2017. Global Normalisation Factors for the Environmental Footprint and Life Cycle Assessment. JRC Scientic Report. Publications Office, European Union, Luxembourg. 10.2760/88930 Available at: https://publications.jrc.ec.europa.eu/repository/handle/JRC109878 (accessed: 18 Dec 2021).
Shen J., Zhu S., Liu X., i Zhang H., and Tan J. 2010. The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag. 51:983–987.
Singh P., Gundimeda H., and Stucki M. 2014. Environmental footprint of cooking fuels: A life cycle assessment of ten fuel sources used in Indian households. Int J Life Cycle Assess. 19:1036–1048. 10.1007/s11367-014-0699-0
Singh B. and Highway D. 2016. What is your restaurant’s carbon footprint? Available at: https://www.pizzamarketplace.com/articles/what-is-your-restaurants-carbon-footprint/ (accessed: 13 Dec 2021).
Stokes H. and Ebbeson B. 2005. Project Gaia: Commercialising a new stove and new fuel in Africa. Boiling Point. 50:31–33.
Terna. 2020. Dati statistici sull’energia elettrica in Italia. Available at: https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche (accessed: 24 Jan 2022).
Theodoridis S. 2015. Monte Carlo methods. In Machine Learning. A Bayesian and Optimization Perspective, Chp. 14, pp 707–744. Academic Press, London. 10.1016/B978-0-12-801522-3.00014-8
Thoday K., Benjamin P., Gan M., and Puzzolo E. 2018. The mega conversion program from kerosene to LPG in Indonesia: Lessons learned and recommendations for future clean cooking energy expansion. Energy Sustain Dev J Int Energy Initiative. 46:71–81. 10.1016/j.esd.2018.05.011
Thompson M., Ellis R., and Wildavsky A. 1990. Cultural Theory. Westview Press, Boulder, CO.
United Nations Development Program (UNDP). 2021. What are the sustainable development goals? Available at: https://www.undp.org/sustainable-development-goals (accessed: 29 Dec 2021).
US Environmental Protection Agency (EPA). 1998. Natural gas combustion. Available at: https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s04.pdf (accessed: 10 Dec 2021).
van Zelm R., Preiss P., Van Goethem T., van Dingenen R., and Huijbregts M.A.J. 2016. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmos Environ. 134:129–137. 10.1016/j.atmosenv.2016.03.044
Vargas-Moreno J.M., Callejón-Ferre A.J., Pérez-Alonso J., and Velázquez-Martí B. 2012. A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev. 16:3065–3083. 10.1016/j.rser.2012.02.054
Vassilev S.V., Baxter D., Andersen L.K., and Vassileva C.G. 2010. An overview of the chemical composition of biomass. Fuel. 89:913–933. 10.1016/j.fuel.2009.10.022
Wikipedia. 2021a. Improved cookstove. Available at: https://en.wikipedia.org/wiki/Improved_cookstove (accessed: 26 Nov 2021).
Wikipedia. 2021b. Gas stove. Available at: https://en.wikipedia.org/wiki/Gas_stove (accessed: 29 Nov 2021).
Wikipedia. 2021c. Electric stove. Available at: https://en.wikipedia.org/wiki/Electric_stove (accessed: 26 Nov 2021).
Wikipedia. 2021d. Charcoal. Available at: https://en.wikipedia.org/wiki/Charcoal (accessed: 9 Dec 2021).
Wollele M.B. 2020. Quantifying energy losses on electric cooking stove. Int J Eng Res Technol. 9(5):753–756. 10.17577/IJERTV9IS050577
World Health Organization (WHO). 2018. Ambient (outdoor) air pollution. Available at: http://www.who.int/mediacentre/factsheets/fs313/en/index.html (accessed: 13 Dec 2021).
World Health Organization (WHO). 2021. Household air pollution and health. Available at: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed: 29 Dec 2021).
Wrangham R. 2009. Catching Fire: How Cooking Made Us Human. Basic Books, New York, NY.
Wrangham R. and Conklin-Brittain N. 2003. Cooking as a biological trait. Comp Biochem Physiol Mol Integ Physiol. 136(1):35–46. 10.1016/S1095-6433(03)00020-5
Wright C., Sathre R., and Buluswar S. 2020. The global challenge of clean cooking systems. Food Secur. 12:1219–1240. 10.1007/s12571-020-01061-8
Xu Z., Sun D.-W., Zhang Z., and Zhu Z. 2015. Research developments in methods to reduce carbon footprint of cooking operations: A review. Trends Food Sci Technol. 44:49–57. 10.1016/j.tifs.2015.03.004
Zuzarte F. 2007. Ethanol for cooking—Feasibility of Small-Scale Ethanol Supply and Its Demand as a Cooking Fuel: Tanzania Case Study. KTH School of Energy and Environmental Technology, Heat and Power Technology, Stockholm, Sweden.