INFLUENCE OF RELATIVE HUMIDITY ON DRIED CA++-ALGINATE FILMS AND COMPOSITES MADE WITH SOY AND PECTIN

Main Article Content

S. BARBUT
A. HARPER

Keywords

alginate, film, pectin, relative humidity, soy protein isolate, tensile strength

Abstract

Dried Ca-alginate films were  manufactured±pectin or soy protein isolate  (SPI) as well dried un-gelled (no Ca2+) pure alginate films: conditioned at either 57% or 100% relative humidity (RH). With the exception of the un-gelled alginate films, all films conditioned at 100% RH were more transparent than at 57% RH. High RH films resulted in higher % elongation at break, distance and work to puncture values than their corresponding films conditioned at 57% RH. ATR-FTIR scans showed several peak shifts when the film forming solutions were gelled with Ca2+ and when the ‘wet’ films were dried.

Abstract 369 | pdf Downloads 475

References

Anonymous. 2012. Townsend further processing -QX quality coextrusion. www.townsend.nl/aspx/products/qx.aspx?pcid=6

ASTM. 2010. Standard test method for tensile properties of thin plastic sheeting, method D882-10. ASTM, Philadelphia, PA.

Barbut S. 2015. Principles of meat processing. In “The Science of Poultry and Meat Processing”. S. Barbut (Ed.), p. 13-1. www.poultryandmeatprocessing.com

Bierhalz A.C.K., Da Silva M.A. and Kieckbusch T.G. 2012. Natamycin release from alginate/pectin films for food packaging applications. J. Food Eng. 110(1):18-25.

Cutter C.N. 2006. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci. 74(1):13-142.

Da Silva M.A., Bierhalz A.C.K. and Kieckbusch T.G. 2009. Alginate and pectin composite films crosslinked with Ca2+ ions: effect of the plasticizer concentration. Carbohydr. Polym. 77(4):736-742.

Fang, Y. Al-Assaf S., Phillips G.O., Nishinari K., Funami T., Williams P.A. and Li L. 2007. Multiple steps and critical behaviors of the binding of calcium to alginate.J. Phys. Chem. B,111(10):2456-2462.

Fazilah A., Maizura M., Abd Karim A., Bhupinder K., Rajeev B., Uthumporn U. and Chew S.H. 2011. Physical and mechanical properties of sago starch--alginate films incorporated with calcium chloride.Int. Food Res. J. 18(3):985-991.

Galus S. and Lenart A. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Eng. 115(4):459-465.

Gohil R.M. 2011. Synergistic blends of natural polymers, pectin and sodium alginate. J. Appl. Polym. Sci. 120:2324-2336.

Harper B.A., Barbut S., Lim L.T. and Marcone M.F. 2013. Characterization of ‘wet’ alginate and composite films containing gelatin, whey or soy protein. Food Res. Int.52(2):452-459.

Harper B.A., Barbut S., Smith A.K. and Marcone M.F. 2015. Mechanical and microstructural properties of 'wet' alginate and composite films containing various carbohydrates. J. Food Sci. 80:E84-E92.

Ismail N.S.M., Ramli N., Hani N.M. and Meon Z. 2012. Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malays. 41(1):41-45.

Janjarasskul T. and Krochta J.M. 2010. Edible packaging materials. Annu. Rev. Food Sci. Technol.1:415-448.

Jaya S., Durance T.D. and Wang R. 2009. Effect of alginate-pectin composition on drug release characteristics of microcapsules. J. Microencapsul. 26(2):143-153.

Kacurakova M., Capek P., Sasinkova V., Wellner N. and Ebringerova A. 2000. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym.43(2):195-203.

Lee B.B., Bhandari B.R., and Howes T. 2018. Gelation of an alginate film via spraying of calcium chloride droplets. Chem. Eng. Sci. 183:1-12.

Mohamadnia Z., Zohuriaan-Mehr M.J., Kabiri K., Jamshidi A. and Mobedi H. 2007. pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery.J. Bioact. Compat. Pol.22(3):342-356.

Mørch Ý.A., Donati I., Strand B.L. and Skjåk-Bræk G. 2006. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7(5):1471-1480.

Nura A. 2018. Advances in food packaging technology-A review. J. Postharvest Techno. 6(4):55-64.

Olivas G.I. and Barbosa-CánovasG.V. 2008. Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci. Technol.41(2):359-366.

Ouwerx C., Velings N., Mestdagh M.M. and Axelos M.A.V. 1998. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym. Gels Networks 6(5):393-408.

Papageorgiou S.K., Kouvelos E.P., Favvas E.P., Sapalidis A.A., Romanos G.E. and Katsaros F.K. 2010. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345(4):469-473.

Parris N., Coffin D.R., Joubran R.F. and Pessen H. 1995. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic films. J. Agric. Food Chem. 43(6):1432-1435.

Pa?cal?u V., Popescu V., Popescu G.L., Dudescu M.C., Borodi G., Dinescu A., Perhai?a I. and Paul M. 2012. The alginate/k-carrageenan ratio's influence on the properties of the cross-linked composite films.J. Alloys Compd. 536: S418-S423.

Pereira L., Amado A.M., Critchley A.T., Vande Velde F. and Ribeiro-Claro P.J. 2009. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 23(7):1903-1909.

Remunan-Lopez C. and Bodmeier R. 1997. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Controlled Release 44(2-3):215-225.

Rhim J.W. 2004. Physical and mechanical properties of water resistant sodium alginate films. LWT-Food Sci. Technol. 37(3):323-330.

Rhim J.W. and Ng P.K. 2007. Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. 47(4):411-433.

Sarmento B., Ferreira D., Veiga F. and Ribeiro A. 2006. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies.Carbohydr. Polym.66(1):1-7.

Sartori C., Finch D.S., Ralph B. and Gilding K. 1997. Determination of the cation content of alginate thin films by FTIR spectroscopy. Polym. J.38(1):43-51.

Shih F.F. 1994. Interaction of soy isolate with polysaccharide and its effect on film properties. J. Am. Oil Chem. Soc. 71(11):1281-1285.

Stephen A.M., Phillips G.O. and Williams P.A. 2006."Food Polysaccharides and their Applications" (2nded). CRC Press, New York, NY.

Tong Q., Xiao Q. and Lim L.T. 2008. Preparation and properties of pullulan-alginate-carboxymethylcellulose blend films. Food Res. Int. 41(10):1007-1014.

Villagómez-Zavala D.L., Gómez-Corona C., Martínez E.S.M., Pérez-Orozco J.P., Vernon-Carter E. J. and Pedroza-Islas R. 2008. Comparative study of the mechanical properties of edible films made from single and blended hydrophilic biopolymer matrices. Rev. Mex. Ing. Quím.7(3):263-273.

Visser P.R. 2012. Casings for foodstuffs U.S. patent application US 2012/0114807 A1.

Wang L., Auty M.A.E. and Kerry J.P. 2010. Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. J. Food Eng. 96(2):199-207.

Xiao Q., Lim L.T. and Tong Q. 2012. Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohydr. Polym. 87(1):227-234.

Xu J.B., Bartley J.P. and Johnson R.A. 2003. Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). J. Membrane Sci. 218(1-2):131-146.