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Abstract

The study aimed to investigate the effects of mixed-mode autoclaving (MMA; sterilization of flour—water
mixture; as control) and single-mode autoclaving (SMA; sterilization of flour and water separately) on the
potential of the fermenting microorganism Lactiplantibacillus plantarum ATCC 8014 (L. plantarum), focusing
on nutrient content, bioactive compounds, and antioxidant activity in millet flour. Pearl millet (Pennisetum
glaucum (L.) R.Br.) flour mixed with water (1:4, w/v) was fermented with L. plantarum (10® colony-forming
unit [CFU]/g) in a fermentor at 37°C for 12, 24, 36, 48, 60, and 72 h, with continuous stirring at 120 rpm, follow-
ing sterilization in an autoclave (121.1°C; 15 psi; 15 min). SMA and MMA had varied effects on micronutrients
and minerals, and fermentation affected them. Fermentation of L. plantarum results in substantially higher
glucose production in SMA compared to MMA, whereas the opposite is true for fructose. SMA had higher glu-
cose levels and lower fructose levels than MMA. The SMA L. plantarum and MMA-fermented samples showed
similar trends in glucose and fructose changes. SMA samples contained higher total phenolic content (TPC)
than MMA, while total flavonoid content (TFC) and total tannin content (TTC) remained unchanged. TPC
and TFC increased gradually, while TTC decreased, after 72-h L. plantarum fermentation. The 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) scavenging rate in sterilized raw millet flour (OMMA) was lower than in raw millet flour,
and it was also lower in SMA than in MMA. The DPPH scavenging rate of OMMA increased significantly after
12 h of fermentation, reaching its peak at 36 h, with the MMA surpassing SMA in scavenging activity. High-
performance liquid chromatography—mass spectrometry (HPLC-MS) analysis detected bioactive substances in
SMA- and MMA-fermented millet, with some variations in their nature and levels. Overall, these results indi-
cate that sterilization method and fermentation time are key factors in shaping the nutrient and bioactive com-
pound content of millet flour, highlighting the need to optimize them to develop nutritious, health-promoting
fermented millet products.

Keywords: antioxidant activity; autoclaving; bioactive compounds; fermentation; Lactiplantibacillus plantarum ATCC
8014; nutrients; pearl millet
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Introduction

Lactic acid bacteria (LAB) play a crucial role in the
food industry, where they primarily ferment carbo-
hydrates into lactic acid for food preservation pur-
poses. LAB also break down proteins and fats, yielding
organic acids, amino acids, and flavor compounds that
enhance the quality, safety, and nutritional value of
food (Yang et al., 2024). LAB have traditionally been
used for natural leavening, improving fermentation
control, enhancing product quality, and extending shelf
life while conserving energy (Aguirre-Garcia et al.,
2024). The rise in demand of fermented foods is linked
to increased health awareness and decrease in disease
occurrence (Zdziobek et al., 2023). Approximately 20
strains of LAB, considered generally recognized as safe
(GRAS), are used in fermentation because they play a
vital role in medical and food applications by modu-
lating gut microbiota and improving metabolic health,
thereby shaping the future of functional foods (Yang
et al., 2024). They produce organic acids that extend
shelf life of bread, inhibit spoilage, and improve various
properties, including rheology, mineral bioavailability,
protein digestibility, flavor, and glycemic index (Serban
et al., 2021; Woo et al., 2020). Lactiplantibacillus plan-
tarum, including the strain ATCC 8014, can effectively
ferment various cereal substrates, including wheat,
barley, sorghum, millet, and rice, making it a widely
used LAB in production of non-dairy food products.
It provides significant technological and nutritional
benefits, converting cereals into more nutritious, safer,
and tastier food products (Arya et al., 2025; Paventi
et al., 2024). It also produces bioactive compounds,
contributing to the preservation of food and human
health (Cui et al., 2021; Serban et al., 2023).

Millet is an essential, gluten-free cereal crop mainly
grown in Asia and Africa. It originated in Africa and is
cultivated in Saudi Arabia’s Jazan region (El-Hashash
et al, 2023; Food and Agriculture Organization
[FAQ], 2021). Nutritionally, it is a rich source of cal-
ories, dietary fiber, protein, vitamins, and minerals.
It is also valued for its beneficial fatty acids and bio-
active compounds, such as polyphenols, making it a
popular functional food ingredient (Amadou, 2022;
Goudar et al., 2023). While pearl millet offers a good
amount of calories, it is also gluten-free and rich in
dietary fiber, non-starch polysaccharides, polyphe-
nols, proteins, fatty acids, minerals—including higher
levels of iron, zinc, and calcium—and vitamins, such
as vitamin E, riboflavin, thiamine, and niacin. It also
contains significant amounts of unsaturated fatty
acids such as linoleic acid, linolenic acid, and oleic
acid as well as saturated fatty acids, such as palmitic
acid and stearic acid (Amadou, 2022). Additionally,
pearl millet is a good source of bioactive compounds,
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such as phenolics, flavonoids, total anthocyanins, and
polymeric tannins (Goudar et al., 2023).

Fermentation is the most cost-effective and energy-
efficient method for improving food preservation, and
various changes occur in the nutritional and functional
properties of grains (Balli et al., 2023; Suma and Urooj,
2017). Fermentation is performed using specific starter
cultures (controlled fermentation), intrinsic microor-
ganisms, or spontaneous processes (Balli et al., 2023).
Compared to traditional fermentation, immobilized
bacteria fermentation helps to control the process and
enhance yield (Yang et al., 2024). Utilizing specific
strains with desired properties as starter cultures in
controlled fermentation is a cost-effective and straight-
forward approach to improve the nutritional value and
health benefits of cereal substrates (Sidari et al., 2020;
Yépez et al., 2019). Sour dough/paste, a fermented
mixture of flour, water, and LAB, is popular among
bakers for its ability to improve bread quality (Serban
et al., 2023). Moreover, fermentation produces various
metabolites, including antioxidants and vitamins, which
enhance their bioactivity or introduce new exogenous
bioactive compounds, thereby increasing the bioactivity
of fermented flour and providing health benefits (Melini
et al., 2019). Furthermore, millet fermentation enhances
the availability of calcium, iron, phosphorus, and zinc
(Yousaf et al., 2021).

In fermentation, using an inoculum of single or mixed
microorganisms, the culture medium must be sterilized.
Therefore, autoclaving, a wet-heat sterilization method,
effectively eliminates microorganisms by using pres-
surized steam, making it much more effective than dry-
heat sterilization (Agrawal, 2024; Jayashree et al., 2024).
However, sterilization can enhance the fermentability
of solid substrates by modifying nutrients such as poly-
saccharides, thereby improving solid-state fermentation
(Zhao et al., 2015). Nevertheless, employing a high-
temperature, short-duration method during steriliza-
tion may lessen nutritional value while simultaneously
eradicating bacteria (Mann et al., 2001). Accordingly,
a comprehensive understanding of how L. plantarum
interacts with the components of millet flour during
fermentation, especially following various autoclav-
ing methods used to sterilize paste mix, is necessary
(Serban et al., 2023). However, the importance of pearl
millet lies in its natural composition, which provides a
nutrient-rich environment that LAB utilizes, promoting
strong microbial growth and activity (Adebo et al., 2022;
Mudau and Adebo, 2025). L. plantarum-fermented pearl
millet is shown to improve antioxidant capacity, bioac-
tive compounds, and nutrient content, positioning it as
a promising functional food for nutritional enhancement.
Research indicates that its enhanced properties can lead
to health benefits, including anti-inflammatory effects
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(Gabriele et al., 2024; Srivastava et al., 2024). Fermented
pear]l millet offers a cost-effective, health-promoting
solution for communities that rely on millet as a staple
food (Srivastava et al., 2021). On the other hand, auto-
claving used to sterilize pearl millet slurry before inocu-
lation with L. plantarum is a crucial pre-processing step
that significantly affects the substrate’s physicochemical
properties by quickly releasing fermentable sugars; this
impacts the bioaccessibility of compounds metabolized
by L. plantarum, thereby influencing the efficiency of fer-
mentation process (Cui et al., 2021; Zheng et al., 2023).
This is reflected in enhanced starch and carbohydrate
digestibility, reduced antinutritional factors, improved
mineral accessibility, and improved microbial safety and
quality of the end fermented product (Chu et al., 2025;
Yehuala et al., 2025). While extensive research exists on
moist autoclaving treatments (i.e., autoclaving the mix-
ture of flour and water) (Moiseenko et al., 2024; Ntsamo
et al., 2020), understanding how different autoclaving
methods affect the substrate and, in turn the fermenta-
tion process by L. plantarum is a significant knowledge
gap. To address this, the novelty of this study lies in pre-
treating a millet flour—water mixture (1:4, w/v) or flour
and water separately to autoclaving (121°C; 15 psi) for
15 min before fermentation. The first type of autoclaving
is known as mixed-mode autoclaving (MMA), while the
second is referred to as single-mode autoclaving (SMA).
After cooling, the Lactiplantibacillus (LPB) inoculum
was added aseptically. Therefore, this study aims to assess
the impact of SMA and MMA treatments on the ability
of fermenting L. plantarum to enhance the nutrient con-
tent, bioactive compounds, and antioxidant activity of
millet flour.

Materials and Methods
Chemicals

Agar powder and de Man, Rogosa, and Sharpe (MRS)
broth were obtained from EMDA International Trading
Establishment (EITE; Riyadh, Saudi Arabia). The follow-
ing supplies were purchased from Sigma-Aldrich (St.
Louis, MO, USA): Folin—Ciocalteu reagent, gallic acid
standard, quercetin standard, and tannic acid standard.
2,2-Diphenyl-1-picrylhydrazyl (DPPH) was purchased
from Merck (Darmstadt, Germany).

Millet flour preparation

Millet grains were purchased from Al-Baha market in
Saudi Arabia. The grains were cleaned of debris, washed,
and left to dry at room temperature. They were then
milled into powder, passed through a 60-mesh sieve, and
stored at 4°C for further use.

Fermentation process

Preparation of L. plantarum ATCC 8014 inoculum

Lactiplantibacillus plantarum ATCC 8014 was procured
from the microbiology laboratory of College of Food and
Agriculture Sciences, King Saud University, Saudi Arabia.
The stock strain of L. plantarum, preserved in 10 mL of
MRS broth with glycerol at -80°C, was inoculated into
MRS broth and incubated at 37°C for 48 h. Grown cul-
ture, 1 mL, containing approximately 10® colony-forming
unit (CFU)/mL, was inoculated into 500-mL sterilized
conical flasks containing 100 mL of sterilized MRS broth
and incubated at 37°C for 48 h. The cells of L. plantarum
were centrifuged (2,300 xg; 4°C; 10 min) and washed
for three times with sterile water to remove any remain-
ing medium. The total number of vegetative cells and
spores was counted by using the colony count technique
according to ISO 7932 (International Organization for
Standardization [ISO], 2004). To enumerate L. planta-
rum, a serial dilution in sterile sodium chloride (0.85%)
solution and the nutrient agar pour plate method were
used; the plates were incubated at 37°C for 24 h. The CFU/
mL was counted with a laser colony scanner model 500A.

Fermentation of millet flour

A 1-L Manifor fermentor (Lambda Laboratory
Instruments,  Sihlbruggstrasse 105, Switzerland),
equipped with dissolved oxygen (DO), temperature, and
pH probes, was used to ferment millet flour. L. planta-
rum served as an inoculum. The fermentor received a
specified weight of millet flour, 490 mL of deionized
water, and 10 mL of inoculum (L. plantarum, 108 CFU/g)
to create fermentation mixture. The millet flour—water
ratio was 1:4. Before adding the inoculum (1 mL; 108
CFU/mL of L. plantarum), the flour and water were
sterilized separately in an autoclave (121.1°C; 15 psi; 15
min) in a process called SMA, or they were sterilized
together, referred to as MMA, a commonly used auto-
claving method for sterilization; thus, it was chosen to
serve as a control. Subsequently, the fermentation pro-
cess was conducted at a constant agitation speed of 120
rpm and 37°C for various durations (12, 24, 36, 48, 60,
and 72 h). The DO level was maintained above a set sat-
uration point (e.g., >10%) using a computer-controlled
feedback system that adjusts agitation speed, airflow rate,
and oxygen level in the incoming gas mixture based on
real-time DO sensor data (Zheng and Pan, 2019). After
completion of fermentation, the pH was measured, the
sample was removed from fermentor, and then heated in
a boiling water bath for 15 min to halt fermentation. The
samples were dried in an oven at 50°C, packed in sample
bags, and stored at -20°C for later analysis. For safety, we
fermented millet flour samples from 6 h to 72 h, each in
a separate conical flask, to eliminate the possible risk of
contamination during withdrawing of samples at desired
time intervals (Figure 1).
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Figure 1.

Overview of the pearl millet flour fermentation process using L. plantarum ATCC 8014. Notes. SMA: single-mode

autoclaving; MMA: mixed-mode autoclaving. a: raw; b: raw millet flour sterilized with MMA; c: 12-h SMA-fermented millet; d:
24-h SMA-fermented millet; e: 36-h SMA-fermented millet; f: 48-h SMA-fermented millet; g: 60-h SMA-fermented millet; h: 72-h
SMA-fermented millet; C: 12-h MMA-fermented millet; D: 24-h MMA-fermented millet; E: 36-h MMA-fermented millet; F: 48-h
MMA-fermented millet; G: 60-h MMA-fermented millet; H: 60-h MMA-fermented millet.

Proximate composition analysis

The proximate composition of millet flours was deter-
mined using AOAC methods without modifications
(AOAC, 2023). Moisture content was measured by

drying overnight at 105°C (method 930.15), ash con-
tent was determined by incineration at 600°C (method
No. 942.05), and fat content was estimated using the
ether extraction Soxhlet method (No. 966.06). Total
nitrogen percentage was determined by the Micro
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Kjeldahl acid digestion/distillation method (No.
984.13), and crude protein was calculated as N% x
6.25. Although a more accurate method exists for mea-
suring protein from amino acids, it has not yet been
validated by AOAC, leading to the continued use of the
6.25 conversion factor (Krul, 2019). The carbohydrate
content was calculated using the difference method
(Pehrsson et al., 2015).

Determination of contents of glucose and fructose

Glucose and fructose levels in fermented samples were
determined by high-performance liquid chromatog-
raphy with a refractive index detector (HPLC-RID;
Shimadzu, Kyoto, Japan) using Kirsten’s method with
some modifications (Weif8 and Alt, 2017). The pro-
cedure involved mixing 5 mL of HPLC-grade water
with 0.5 g of sample, vortexing for 1 h, and then fil-
tering the mixture through a 0.45-pum cellulose acetate
syringe filter. Standard stock solutions of glucose and
fructose at different concentrations were prepared
and used for external calibration. The HPLC system,
equipped with an LC-NH2 column (150 x 4.6 mm, 5
pm), an RID-10A detector, an LC-10AB binary pump,
and an SIL-20A autosampler (Shimadzu), was used to
analyze fructose and glucose. Separation conditions
were as follows: a mobile phase of 90% aqueous ace-
tonitrile (HPLC grade) with an isocratic flow rate of 1
mL/min, a column temperature of 85°C, an injection
volume of 1 pL (diluted 10-fold) for sample extracts
and standards, and a 50-min run time. Additionally,
a spiked sample was used to ensure the accuracy and
quality of results.

Determination of nutritional and heavy metal levels

A mixture of 0.5 g of sample, 0.5 mL of HCI, and 9.5 mL
of HNO; was digested in a microwave adjusted as fol-
lows: step 1: 50°C, 2 min, and 1,000 W; step 2: 30°C,
3 min, and 0 W; step 3: 189°C, 25 min, and 1,000 W;
step 4: 150°C, 1 min, and 0 W; step 5: 180°C, 4 min, and
1,000 W; step 6: 180°C, 15 min, and 1,000 W (ETHOS
UPD, 2024). For analysis, the sample (diluted 50-fold with
2% HNO,) was injected in an ICP-MS-2030. Key param-
eters included a sampling depth of 5 mm, an output
power of 1.2 kW, a plasma gas flow rate of 9.0 L/min, an
auxiliary gas flow rate of 1.10 L/min, a spray chamber
temperature of 5°C, and a carrier gas flow rate of 0.70
L/min. Calibration curves were plotted using element
standards, allowing the calculation of sample element
concentrations, expressed in mg/kg (ppb x 0.001) for
nutritional elements and pg/kg (ppb) for heavy toxic
elements.

Determination of TPC, TFC, TTC, and DPPH scavenging
activity

Preparation of methanol extract

A total of 1 g of fermented millet flour and 20 mL of 95%
methanol were placed in a conical flask and wrapped in
aluminum foil. The flask was shaken for 4 h and then
filtered using Whatman filter paper No. 42, followed by
filtration through a 0.2-um membrane filter. The filtrate
was packed in amber glass bottles and stored at 5°C until
used. This filtrate was used to analyze TPC, TFC, TTC,
and DPPH scavenging rate.

Total phenolic content

The TPC of millet methanol extract was determined
according to the method reported by Mouhoubi et al.
(2023). A volume of 100 pL of extract was mixed with
100 pL of Folin—Ciocalteu reagent. After 5 min, 300 pL
of 20% sodium carbonate solution was added to the mix-
ture. Next, the sample was incubated in a dark place for
30 min at ambient temperature. Then absorbance of the
sample was measured at 765 nm using a ultraviolet (UV)-
visible spectrophotometer (UV-3200; Shimadzu). The
TPC was calculated using a linear regression equation:
y = 0.0049x - 0.038 (R* = 0.9981), derived from a gallic
acid standard curve created with varying concentrations
(25-400 pg/mL). The TPC findings are expressed as mg
gallic acid equivalent (GAE)/g dry weight (dw).

Total flavonoid content

The TFC of sample methanol extract was determined using
the method described by Hussain et al. (2024, 2025). A 0.5-
mL aliquot of the extract was mixed with the same vol-
ume of 2% aluminum chloride (AICL,) solution. After 1 h,
the wavelength was read at 420 nm. The TFC was quan-
tified using the regression equation: y = 0.0031x - 0.0294
(R? = 0.9975). This equation was derived from a querce-
tin calibration curve prepared using different concentra-
tions ranging from 25 to 400 pg/mL. The TFC results are
expressed as mg of quercetin equivalents (QE)/g of sample
(mg QE/g dw).

Total tannin content

The TTC of methanol extract was determined by fol-
lowing the method described by Rodrigues et al. (2007),
with minor changes. A total of 0.1 mL of extracted sam-
ple was added to a 2-mL Eppendorf tube containing
1.5 mL of milli-Q water and 0.1 mL of Folin—Ciocalteu
phenol reagent for 8 min. Then, 0.3 mL of 35% Na,CO,
solution was added to the mixture for neutralization.
Next, the mixture was shaken well and kept in the dark
at room temperature for 20 min. Absorbance of the mix-
ture was recorded at 700 nm. To determine TTC, a cali-
bration curve was created using various concentrations
of tannic acid standard, and the following equation was
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used: y = 0.005x - 0.016 (R? = 0.9992). The TTC results
are expressed as mg tannic acid equivalents (TAE)/g dw.

DPPH radical scavenging rate

The methanol extract of fermented millet was evaluated
for its antioxidant activity using the DPPH scaveng-
ing test, as described earlier (Alshammari et al., 2025).
Briefly, 200 pL of fermented millet sample was mixed
with 2 mL of 0.1-mM DPPH solution in ethanol. The
mixture was vortexed and left in the dark at room tem-
perature for 30 min before measuring its absorbance at
517 nm. Methanol was also evaluated for its DPPH scav-
enging rate as a blank. The DPPH scavenging rate of the
extract was calculated using the following formula:

DPPH scavenging activity (%) = ([A, — A J/A ) x 100,

where A is the absorbance of the blank, and A_ is the
absorbance of the sample.

Untargeted LC-MS/MS analysis of the composition of
pearl millet flour

The analysis of the composition of SMA- and MMA-
pretreated pearl millet, followed by fermentation for
72 h, was conducted using the liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) system.
The analytes were separated using a Phenomenex Luna
C18 PS column (100 A, 100 x 2.1 mm, 1.7-pym parti-
cle size) with gradient conditions involving water with
0.01% formic acid (solution A) and acetonitrile (solu-
tion B), both modified with 10-mM ammonium ace-
tate, at a flow rate of 0.4 mL/min. The column oven was
40°C, and the injection volume was 10 pL. Mass spec-
trometry analysis used the X500R Quadrupole time-of-
flight (QTOF) system with electrospray ionization in
positive mode and sequential window acquisition of all
theoretical mass spectra (SWATH) acquisition. Time-
of-flight mass spectrometry (TOF-MS) scans were con-
ducted from 50 to 1,000 Da with specific voltage and gas
parameters (Sun et al., 2017). For detection and identi-
fication, the LC-MS/MS data were processed using the
MZmine 2.53 software (Boutet et al., 2022; Chambers
etal., 2012).

Statistical analysis

The data were presented as means + standard deviation
(SD) from triplicate experiments. One-way analysis of
variance (ANOVA) and two-way ANOVA were employed
to identify significant differences between treatment
groups. Tukey’s test (one-way ANOVA) and pairwise
comparisons (two-way ANOVA) were used to assess
significant differences between mean values (p < 0.05).

Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet

IBM SPSS Statistics, version 28.0 (IBM Corporation, NY,
USA), was used for statistical analysis.

Results and Discussion

Viability growth dynamics of L. plantarum ATCC 8014
during millet fermentation under various autoclaving
regimes

Assessing the kinetic behavior of microorganisms is
crucial for planning industrial production, understand-
ing responses to environmental variables, and design-
ing the most technologically efficient reactors (Ugok
and Sert, 2020).

In Table 1, the growth data show the population changes
of L. plantarum ATCC 8014 during a 72-h fermenta-
tion, using SMA- and MMA-pretreated millet flour as
substrates. A control MRS substrate, simulating ideal
laboratory conditions, was used as a baseline for com-
parison. All groups began with statistically similar, high
inoculum levels (~1.00-1.03 x 10® CFU/g), confirming a
consistent starting point. First, a lag/log phase (lag/early
exponential, 0-24) at which an adaptation period occurs,
followed by exponential growth. It has been reported
that the lag phase for L. plantarum in cereal dough gen-
erally happens between 3 h and 4 h under conditions of
30-37°C and pH 5.5-6.5, immediately followed by the
late exponential (Log) phase, and then the death phase
(Popova-Krumova et al., 2024; Slizewska and Chlebicz-
Wojcik, 2020).

In detail, the most notable observation is the superior
early growth with SMA treatment. This is evident in the
higher population count for SMA (3.53 x 108) at 0-12 h,
which increased by 249.5%, compared to the initial bacte-
rial count (1.01 x 108). In contrast, increments of 70% and
99.03% in bacterial count were observed for MRS con-
trol and MMA-fermented samples, respectively, during
the same period. At 12-24 h of fermentation, compared
to the initial inoculum count, the population of SMA-
treated millet increased by 71%, followed by MMA-
treated millet, which increased by 51%, and then MRS,
with an increase of 42.2%.

Differences in the lag/early exponential phases observed
in fermented millet substrates, particularly those treated
with SMA, may result from variations as to how the flour
matrix is affected. This difference probably results from
the Maillard reaction and other heat-induced chemical
changes. MMA (mixing flour and water during steriliza-
tion) may cause more extensive non-enzymatic Maillard
reactions or starch gelatinization, which temporarily
reduces nutrient bioavailability for fermenting bacteria,
leading to a slightly more extended lag phase because the
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Table 1.
autoclaving.

Fermentation time

Changes in L. plantarum ATCC 8014 count (CFU/g) over time during millet flour fermentation subjected to single- and mixed-mode

L. plantarum fermentation

MRS (CFU/g) SMA-millet (CFU/g) MMA-millet (CFU/g)
0h 1.00£0.098x10%° 1.01£0.028x10% 1.03£0.113x10%
12h 1.70£0.071x10% 3.53£0.177x10%¢ 2.05£0.212x10%
24h 2.40£0.141x10% 6.05:0.354x10% 3.1040.424x10%
36h 9.4540.989x10% 12.531.59x10% 11.05£0.212x10%
48h 1.65£0.212x10% 1.90£0.283x10% 1.90£0.127x10%
60 h 9.74+0.820%10% 10.6121.44x10% 10.15£0.021x10%
72h 2.630.488x10% 2.210.057x10% 1.2040.035x 108

Note: Data are displayed as means £ SD (n = 3). Data were analyzed statistically using one-way ANOVA. According to Tukey’s test (p < 0.05),
mean values accompanied by different superscript alphabets differ significantly within a column.
MRS: de Man, Rogosa, and Sharpe agar; SMA: single-mode autoclaving (sterilizing each flour and water separately); MMA: mixed-mode

autoclaving (sterilizing flour and water together); 12—72 h, fermentation time.

bacteria need to adapt to a more complex or nutrient-de-
pleted environment (Pontonio et al., 2020; Xiang et al.,
2019).

Moreover, SMA reduces direct contact and reactions
between flour components and water at high tem-
peratures. This helps to maintain the native structures
of starches, sugars, and proteins, making them more
accessible to enzymatic breakdown and to L. planta-
rum during the early stages of fermentation (Verni et al.,
2019). Additionally, SMA pretreatment may enhance
starch gelatinization compared to the MMA method, as
MMA’s inconsistent hydration can result in partial gela-
tinization. SMAA, by using pre-sterilized flour and sterile
water, ensures a uniform gel that enhances the accessi-
bility of glucose and dextrins (Chiodetti et al., 2024).
This efficient starch hydrolysis is crucial for LAB growth
(Pontonio et al., 2020).

Furthermore, at 24—48 h (late exponential phase), L.
plantarum in all samples reveals rapid growth during
24-36 h of fermentation, increasing by 293.8% in MRS
control, 256.5% in MM A-pretreated millet, and 106.94%
in MMA -pretreated millet. The second part of the expo-
nential phase (36—48 h) shows slower growth, as shown
by 74.6%, 71.95%, and 51.64% increase in bacterial
counts in MRS control, MMA-, and SMA-pretreated
samples, respectively. Although L. plantarum grew
faster in MRS control during the exponential phase,
the bacterial counts of SMA- and MMA-pretreated
fermented samples reached a peak of 1.9 x 10°
CFU/g, compared to 1.65 x 10° CFU/g in the control.
These findings aligned with the changes observed in
glucose and fructose during the fermentation of millet
samples (Figure 3).

Finally, the stationary/death phase (48—72 h) exhibits a
significant reduction in cell viability (41-46.6%) across
all samples (48—60 h), with a more pronounced decrease
noted after 60 h of fermentation (73—-87.4%). As shown,
bacterial death occurred more rapidly in millet samples
compared to the control. This is probably due to environ-
mental stressors, including the production of bacterio-
cins and organic acids, and a decrease in pH (Anumudu
et al., 2024; Yoon et al., 2024).

Interestingly, despite decrease in counts at 72 h, L. plan-
tarum levels in all fermented SMA- and MMA-treated
millet samples remain above the original inoculum, with
values of 2.21 x 10® and 1.29 x 10% respectively, com-
pared to 2.63 x 108 for the control MRS. However, higher
bacterial death in MMA samples could be due to faster
depletion of glucose and fructose than in SMA, consis-
tent with the findings of simple sugar analysis (Figure 3;
Supplementary Table S2). In general, L. plantarum exhib-
its higher acid tolerance than other LABs (Paramithiotis,
2025); therefore, the millet samples retained moderately
viable cells after 72 h of fermentation. This is supported
by the analysis of pH values of the studied samples
(Figure 2).

Besides, in addition to lactic acid, LAB, includ-
ing L. plantarum, can produce other antimicro-
bial compounds, including acetic acid, ethanol, and
bacteriocins, under specific conditions. In the nutri-
ent-depleted and acidic environment, metabolic
pathways can undergo significant changes. The pro-
duction of acetic acid, which is more toxic to micro-
bial cells than lactic acid, might increase. Besides,
L. plantarum is known to produce bacteriocins (e.g.,
plantaricin), which are protein-based compounds that
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inhibit the growth of closely related bacterial strains
(Ismael et al., 2024; Zhao et al., 2025). While primar-
ily targeting competitors, at high cell densities, these
bacteriocins can also cause auto-inhibition, a phe-
nomenon known as “chemical warfare,” where some
cells undergo autolysis (self-digestion). The release of
hydrolytic enzymes (autolysins) degrades the cell wall
(Kawai et al., 2023), leading to the observed decrease
in CFU. Nevertheless, autolysis, followed by apoptosis,
is believed to be a survival strategy for the population,
as lysed cells release intracellular nutrients that are
absorbed by the remaining live cells, helping the cul-
ture survive longer (Allocati et al., 2015; Mohiuddin
et al., 2021). A sharp decline between 60 h and 72 h is
probably due to a combination of ongoing acid stress
and substantial autolytic activity. The above data sug-
gest that the sterilization method (SMA vs. MMA) had
a slight but significant impact, especially during the
early- to mid-fermentation phases.

In summary, the impressive growth potential of L. plan-
tarum in both SMA- and MMA-pretreated millet, reach-
ing ~1.0 x 10° CFU/mL, demonstrates that millet flour is
an effective substrate for LAB fermentation, supporting
the trend toward plant-based fermented foods and func-
tional components (Das et al., 2022).

Changes in pH of millet flour during L. plantarum
fermentation

As shown in Figure 2, raw millet flour has a pH of 6.9,
which decreases to 6.56 after MMA (i.e., sterilized raw
millet flour, OMMA), indicating the release of organic
acids into the medium. Autoclaving can increase the
acidity of cereal flour by releasing adhered phenolic
acids through hydrolysis in the high-temperature and

Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet

high-moisture environment (Rico et al., 2020; Solmaz
et al., 2025). Fermentation of both SMA and MMA sam-
ples results in a gradual decrease of pH over time, reach-
ing its lowest point at 72 h (pH = 3 and 4, respectively).
The most rapid decline in pH occurred between 12 h
and 36 h, corresponding to the period of the most vig-
orous bacterial growth and sugar acidification (Table 1).
Lactic acid, a byproduct of sugar metabolism, accumu-
lates during L. plantarum fermentation of cereals, low-
ering the medium’s pH (Adisa et al., 2024; Moiseenko
et al., 2024). Additionally, it has been reported that auto-
claving can render a more favorable substrate, thereby
enhancing LAB fermentation and lowering pH (Isembart
et al., 2025).

It is also worth noting that fermented SMA-treated
millet samples have lower pH values than fermented
MMA-treated millet samples, indicating a higher pres-
ence of L. plantarum in SMA, compared to MMA.
This is probably due to the greater effect of moist
heat and pressure exerted by MMA on millet compo-
nents, mainly starch, which may lead to the formation
of resistant starch. It is discovered that autoclaving
causes resistant starch type III to form via retrogra-
dation, a process in which short-chain amylose mole-
cules bond via hydrogen bonds after cooling (Chuwech
et al., 2023). As observed previously, SMA and MMA
treatments resulted in a decline in pH from 6.9 in the
raw sample to 3.0 (SMA) and 4.0 (MMA) after 72 h of
fermentation. However, it is reported that millet fer-
mentation resulted in higher acidification with milder
initial heat treatments (Janiszewska-Turak et al.,
2024). Homofermentative L. plantarum primarily pro-
duces lactic acid, which aids in food preservation and
flavor, but can inhibit bacterial growth at high con-
centrations (Popova-Krumova et al., 2024). A notable
decrease in pH in SMA, compared to MMA, may be

Figure 2.
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due to high accumulation of lactic acid, which enters
bacterial cells and dissociates at neutral pH, releasing
protons and lowering internal pH. Accordingly, cells
expend energy to pump out protons via adenosine
triphosphate (ATP)-dependent transporters to main-
tain homeostasis, which is called “uncoupling effect”
This effect and subsequent acidification lead to energy
depletion as ATP is diverted, reducing enzyme activity
and potentially causing cell death when pH balance is
disrupted (Martinez et al., 2012; Sionek et al., 2024).
Our data show that the population decreased by 41%
between 48 h and 60 h, clearly indicating severe acid
stress.

Overall, the MMA treatment produced less acid than
the SMA treatment because its harsher processing cre-
ated more resistant starch, which fermented less effec-
tively. In contrast, the SMA treatment created a much
more acidic environment, which was toxic to L. planta-
rum, leading to greater apoptosis than MMA by the end
of fermentation.

Proximate composition of millet flour fermented with
L. plantarum ATCC 8014

The proximate composition of L. plantarum-fer-
mented millet flours subjected to different autoclaving
methods (SMA and MMA) is detailed in Table 2 and
Supplementary Table S1. The levels of ash, fat, protein,
and carbohydrates in the raw millet flour were 1.89, 7.76,
6.19, and 84.23 g/100 g dw, respectively. Ash levels sig-
nificantly increased to 2.25 g/100 g dw, while carbohy-
drate and protein levels remained unchanged at 85.07
and 5.68 g/100 g dw, respectively, in the sterilized raw
millet flour (OMMA), compared to the untreated flour.
Meanwhile, fat levels decreased to 7.00 g/100 g dw (p <
0.05) (Supplementary Table S1).

Regardless of the fermentation method, using two dif-
ferent autoclaving modes, SMA and MMA, prior to
L. plantarum fermentation resulted in varying macro-
nutrient contents. In SMA, the levels of fat and protein
(total means of 5.96 and 6.95 g/100 g dw, respectively)
were significantly higher (p < 0.05) than those in
MMA. Conversely, ash and total carbohydrates were
higher in MMA, with total mean values of 2.58 and
85.54 g/100 g dw, respectively (Table 2). The differ-
ences observed between SMA and MMA in changes
in macronutrient suggested that they exhibit distinct
autoclaving effects, reflected in their unique interac-
tions with millet flour components. Previous studies
reported an increase in total carbohydrate level of
cereals after autoclaving (Faridah et al., 2022; Udensi
et al., 2010).

Besides, regardless of the autoclaving mode used, the
ash content increases significantly from a total mean of
2.25 g/100 g dw for the OMMA sample as fermentation
time progresses, reaching a total mean of 2.88 g/100 g dw
at 48 h. It then decreases with further fermentation, reach-
ing its minimum level at 72 h (a total mean of 2.25 g/100
g dw), and leveled off at the initial OMMA value (p < 0.05).
The fat content of OMMA (7.0 g/100 g dw) is significantly
higher than all fermented samples (12—72 h), with the 72-h
sample showing the lowest value (p < 0.05). The protein
content of the OMMA sample increases significantly in
all fermented samples, with the highest values observed
at 24 h and 36 h (7.53 g/100 g dw and 7.22 g/100 g dw,
respectively). Furthermore, the protein content of the
remaining fermented samples does not differ significantly
from that of the 36-h sample (p < 0.05). The carbohydrates
content remains unaffected by fermentation for 36 h but
decreases after 60 h, then increases after 72 h (the total
mean of 88.29 g/100 g dw; p < 0.05) (Table 2).

As shown in Supplementary Table S1, both SMA and
MMA demonstrate distinct behavior during L. planta-
rum fermentation. Specifically, L. plantarum fermen-
tation has a more pronounced impact on MMA than
on SMA, as indicated by the magnitude of changes in
macronutrients. In particular, MMA shows higher
increases/decreases in ash, fat, protein, and carbo-
hydrates as fermentation progresses than SMA. This
could result from the moist heat and pressure applied
by MMA to millet components, which enhance the mil-
let matrix’s suitability for both growth and activity of L.
plantarum.

Furthermore, increase in protein levels in millet after
fermentation is probably due to the production of sin-
gle-cell protein by the LAB culture (Yadav et al., 2016), or
the synthesis of specific amino acids, which subsequently
elevates protein levels after the fermentation process
(Uwaegbute et al., 2000). In contrast, decrease in protein
level is potentially due to changes in dry matter, which
is probably the result of the hydrolysis of sugars and fats
(Dangal et al., 2024).

Reduced fat content in both SMA and MMA during fer-
mentation could be due to the enhanced lipase activity
produced by L. plantarum. It is reported that lipases
could degrade triglycerides into fatty acids and glyc-
erol, which are then metabolized for energy, potentially
increasing nutrient bioavailability or altering fat content
(Djorgbenoo et al., 2023; Jan et al., 2022; Ogodo et al.,
2019).

The rate of increase in carbohydrate content, particu-
larly between 48 h and 72 h of fermentation, is slightly
higher than in SMA (Supplementary Table S1). The rise
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in carbohydrates could be due to L. plantarum deplet-
ing dry matter during the hydrolysis and metabolism of
oligosaccharides, simple sugars, and lipids. In this study,
the calculated carbohydrate by difference includes crude
fiber. Another explanation for increase in carbohydrates
after L. plantarum fermentation is that because pearl
millet contains 2.6—-4.0% crude fiber, a lignin—carbohy-
drate complex (Abdalla et al., 1998), laccases discovered
in L. plantarum (Olmeda et al., 2021), could probably
contribute to breaking down lignocellulose molecules
(Bao et al., 2022; Zhou et al., 2023), partially releasing
cellulose and hemicellulose from the complex, thereby
increasing the carbohydrate content.

Overall, the results indicated that MMA showed slightly
better preservation of macronutrients prior to fermen-
tation, compared to SMA, although variations were
observed in fat and protein levels as well.

Sugar analysis

In this study, sucrose, glucose, and fructose were analyzed
in millet samples. However, sucrose was not detected in
these samples. As shown in Figure 3, glucose levels in
OMMA and raw millet (Or) are statistically similar (86.81
and 94.11 mg/kg dw, respectively; p > 0.05). In contrast,
fructose levels are significantly higher in OMMA than
in raw millet (73.18 and 59.92 mg/kg dw, respectively;
p < 0.05). This suggests that autoclaving may partially

450
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50

Sugar content (mg/kg)

hydrolyze specific oligosaccharides, such as sucrose or
maltose, into their constituent monosaccharides, glucose
and fructose. This is supported by the fact that auto-
claving can hydrolyze about 10% of sucrose (Druart and
Wulf, 1993). Furthermore, regardless of the fermentation
time, data in Supplementary Table S2 reveal that SMA
has a significantly (p < 0.05) higher glucose level (total
mean of 192.57 mg/kg) than MMA (total mean of 53.79
mg/kg), indicating the difference between the two auto-
claving modes in their interactions with substrate mate-
rial (see Section 3.1).

Regarding the impact of fermentation, two distinct
phases are observed in glucose and fructose levels in mil-
let samples. An initial phase (0-36 h), aligning with the
lag—log exponential stage, and a second phase (36-72 h)
aligning with the log—stationary—death stage (Figure 3;
Supplementary Table S2). The SMA-treated millet shows
a significantly higher glucose level (181.58 mg/kg dw)
after 12 h of fermentation compared to that of OMMA
(control: 86.81 mg/kg dw), while it remains unchanged
in MMA-treated millet (71.72 mg/kg dw; Figure 3).
Increasing the fermentation time from 12 h to 36 h
resulted in a gradual increase in glucose content from
86.81 to 388.25 mg/kg dw in SMA samples, after which
it declined. MMA samples exhibit a similar decreas-
ing trend as that of SMA-treated samples, with glucose
reaching zero level after 36 h of fermentation (Figure 3).
After 48 h of fermentation, glucose levels decreased in
both SMA and MMA (p < 0.05), with SMA showing a

B Glucose M Fructose

Fermentation (h)

Figure 3. Glucose and fructose contents in autoclave-treated pearl millet, followed by fermentation with L. plantarum ATCC
8014. Means * SE (n = 3) were statistically analyzed using one-way ANOVA. According to Tukey’s test (p < 0.05), mean values
with different superscript alphabets differ significantly. Total mean values (n = 24) were analyzed using a two-way ANOVA.
According to pairwise comparison (p < 0.05), the total mean values marked with (*) or (*) are statistically different. Notes: Or:
raw millet flour; OMMA: raw millet flour sterilized with MMA; MMA: mixed-mode autoclaving: sterilizing flour and water together;
control; SMA: single-mode autoclaving. Lowercase and uppercase alphabets indicate significant differences among the mean
values of glucose and fructose in millet flour during fermentation of samples, respectively. Error bars indicate the standard

error (SE) of mean values.
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gradual decline to its lowest level at 72 h, while glucose in
MMA is entirely depleted after 48 h. Conversely, fructose
in SMA and MMA behaved differently during L. plan-
tarum fermentation compared to glucose, as its levels
consistently decreased in MMA samples over 12—72 h of
fermentation, reaching zero by 72 h. In contrast, L. plan-
tarum fermentation of SMA-treated millet causes fruc-
tose to drop to zero after 24 h (p < 0.05; Figure 3).

Generally, fructose level in the MMA sample, regardless
of fermentation, is significantly higher (p < 0.05) than
in the SMA sample. Fermentation of millet, regardless
of the autoclaving method used, exhibited a significant
and gradual decrease (p < 0.05) in fructose levels with
increasing incubation time, reaching a minimum at 72 h
(Supplementary Table S2).

However, L. plantarum strains demonstrated supe-
rior carbohydrate utilization compared to most LABs,
attributed to their sugar biosynthesis pathways and sug-
ar-specific phosphate transport systems, enabling metab-
olism of a range of sugars, such as glucose and fructose
(Zhao et al., 2023). Increase in glucose in fermented
SMA-treated millet samples could be due to the break-
down of complex sugars into simpler forms through
starch hydrolysis (Mohapatra et al., 2024). In contrast,
gradual decrease of glucose by L. plantarum is proba-
bly attributed to the fact that LAB are characterized by
more robust carbohydrate utilization system, commonly
discovered in most LAB strains, which supports cellular
growth (Mohapatra et al., 2024). These results coincided
with the change in population count over 72-h fermen-
tation of autoclaved-pretreated millet flour (Section 3.1).
However, decrease in fructose during fermentation could
be due to its consumption through the glycolysis path-
way (Krahn et al., 2021) or its conversion to mannitol by
L. plantarum (De Vuyst et al., 2009; Krahn et al., 2021).
Generally, the severe nutrient limitation is a primary
driver of the transition into the death phase (Section 3.1),
as the cells no longer have the energy to maintain viabil-
ity (Li et al., 2023).

Finally, millet fermentation, following SMA and MMA,
variably affects glucose and fructose levels, suggesting
that sterilization and microbial processes interact to
influence these levels.

Analysis of nutritional and toxic heavy element levels

For the quality control (QC) of the ICP-MS-2030 used
for element analysis, a certified multi-element solution
containing 36 inorganic standard elements (10 mg/L
each of Ag, Al, As, Ba, B, Ca, Cd, Ce, Co, Cr, Cu, Dy,
Er, Eu, Fe, Gd, Ho, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni,
P, Pb, Rb, Se, Sm, Sr, T, Tm, V, and Zn) and a separate

Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet

10 mg/L Hg standard were used for calibration. Spike
samples were analyzed to assess matrix effects and
method accuracy, yielding recovery rates of 80—120%.
The method was validated for heavy toxic metals with
limits of detection (LOD) and quantitation (LOQ) val-
ues for Fe (0.33 and 1.125 ppb), Na (19.97 and 66.58
ppb), Mn (1.54 and 5.25 ppb), Zn (0.22 and 0.744
pb), Ca (32.57 and 108.56), K (19.44 and 64.81 ppb),
Mg (2.26 and 7.55), As (2.80 and 9.34 ppb), Cd (0.54
and 1.81 ppb), Hg (1.54 and 5.14 ppb), Pb (1.09 and
3.63 ppb), and Sb (3.50 and 11.66 ppb), in accordance
with ISO (2004, 2016) standards (ISO and International
Electrotechnical Commission [IEC], 2017).

The raw millet flour contains both nutritional macro-
elements and microelements as well as heavy toxic met-
als (Tables 3 and 4; Supplementary Tables S3 and S4).
K, Mg, Na, Ca, Cr, Cu, Fe, Ni, Mn, and Zn have levels
of 3432.5, 1011.1, 127.4, 201.8, 1.23, 6.3, 1.04, 3.59,
19.8, and 46.2 mg/kg dw, respectively. Additionally,
it contains heavy toxic metals such as As, Cd, Hg, Pb,
and Sb, with levels of 6.62, 66.87, 33.74, 16.59, and
1,256.62 pg/kg dw, respectively. All nutritional ele-
ments and heavy toxic metals in millet flour remain
unchanged, compared to OMMA, except for K, Na, and
Sb, which showed significantly increased or decreased
levels, respectively (p < 0.05; Supplementary Table S3).
Regardless of fermentation, SMA resulted in signifi-
cantly higher total mean levels of Cr, Cu, Fe, Cd, Hg,
and Sb compared to MMA, and significantly lower
mean levels of Mn, Ca, Mg, and Na (p < 0.05), while Ni,
As, and Pb remained unchanged (p > 0.05) (Tables 3 and
4). This suggests that MMA and SMA treatments may
interact differently with the millet flour matrix (Figure
3), leading to varied mineral content. Previous studies
have reported fluctuations in the mineral content of
cereals and legumes after autoclaving (Karagoban et al.,
2023; Kemal et al., 2025).

The mineral content results of millet flour after L. plan-
tarum fermentation, regardless of SMA and MMA, are
shown in Table 2. Total mean levels of several nutri-
tional minerals, including Cu, Mn, Ca, K, Mg, and Na,
increased significantly during the fermentation period
of 12-36 h (p < 0.05). After that, their levels either
decreased gradually until 72 h (Mg), fluctuated (Na)
(p < 0.05), or remained stable (p > 0.05). In contrast,
other nutritional elements varied differently over the 72
h of fermentation. For example, Cr gradually decreased
significantly until 24 h of fermentation, then remained
stable for rest of the period. While the total mean levels
of Zn and Ni remained unchanged over the entire 72 h,
but Fe showed variable changes (Table 3; Supplementary
Table S3). It is worth noting that decrease in Mg during
later fermentation stages may result from its uptake
by L. plantarum as an essential cofactor for microbial
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enzymes involved in glycolysis and nucleic acid stability
(Sun et al., 2025). Considering that adults can consume,
on average, 1.5 servings of cooked millet (1 serving = 1
cup; 174 g) (Gleim, 2025), raw and autoclaved/fermented
samples can supply Fe, Mn, Zn, Cu, Cr, and Ni that meet
the recommended dietary allowance (RDA) or adequate
intake (AI) daily requirements.

In Table 4, SMA shows significantly higher levels of Hg
and Cd (total means of 33.17 and 1,307.64 pg/kg dw,
respectively) and lower Cd levels (total mean: 71.81 pg/
kg dw) than MMA (p < 0.05), while As levels remain sim-
ilar (p > 0.05). These results confirmed the varied impacts
of SMA and MMA on millet components. Moreover,
regardless of the autoclaving method, the fermentation of
autoclave-pretreated pearl millet with L. plantarum does
not reduce the levels of analyzed heavy metals. Instead,
it causes significant increase in Cd, Pb, and Sb (p < 0.05),
while As and Hg levels remain unchanged (Table 4).
Although cereals provide essential nutrients, they also
contain toxic heavy metals that can harm humans. The
European Regulation (EU) 2021/1323 and the US Food
and Drug Administration (FDA) have set maximum
permissible limits (MPL) for these harmful substances
(Mititelu et al., 2025). Except for Sb, all toxic heavy met-
als in raw and autoclaved-millet fermented samples are
below the MPLs (Table 3 and Supplementary Table S4).
Previous studies have reported contamination of millets
with toxic heavy metals (Omeje et al., 2021).

According to the above-mentioned data, variations in
millet’s mineral composition after autoclaving pretreat-
ment, followed by L. plantarum fermentation, could
be due to changes in dry matter content, as microbial
metabolism alters millet composition by consuming
energy-rich components.

In summary, processing methods for pearl millet flour
significantly influence its mineral content. SMA and
MMA result in varying changes in flour. At the same
time, fermentation generally boosts levels of benefi-
cial minerals but also raises certain toxic heavy metals,
mostly to non-harmful levels.

Analysis of TPC, TFC, TTC, and DPPH scavenging activity

The raw millet sample exhibits TPC, TFC, TTC, and
DPPH scavenging activity of 2.81 mg GAE/g dw, 2.20 mg
QE/g dw, 2.04 mg TAE/g dw, and 76.82%, respectively
(Table 5 and Supplementary Table S5). As observed,
OMMA has significantly lower TPC (2.73 mg GAE/g dw)
and higher TFC (2.67 mg QE/g dw) than raw millet (p <
0.05), while TTC is similar in both cases (Supplementary
Table S5). This decline in TPC of millet after autoclaving
could be due to the breakdown of heat-sensitive phenolic

compounds or their transformation into unextractable
forms, as they form insoluble complexes with macro-
molecules (Wang et al., 2022). Moreover, Rahman et al.
(2021) reported that thermal treatment boosts flavonoid
levels by releasing bound forms, but the effect depends
on plant matrix, temperature, and duration. Furthermore,
regardless of fermentation period, SMA samples have
significantly higher TPC than MMA samples (total mean
of 3.12 and 2.94 mg GAE/g dw, respectively), while TFC
and TTC showed similar values (Table 5). This suggests
that these molecules react differently under two different
autoclaving modes (121°C, 15 psi, 15 min). However, the
effect of autoclaving on food varies depending on factors
such as material, duration, temperature, and the type of
phenolic compounds present. The impact of autoclav-
ing on TPC, TFC, and TTC varies across studies, with
decrease, increase, or no significant change reported
(Balyatanda et al., 2024; Kemal et al., 2025).

Regarding the impact of fermentation, TPC increases
gradually and significantly after 12 h (total mean of
2.92 mg GAE/g dw), reaching a peak between 36 h and
48 h, then gradually declines from 48 h to 72 h (p < 0.05;
Table 5). At 12-24 h, fermentation does not (p < 0.05)
alter TFC significantly in OMMA (total mean of 2.67 mg
QE/g dw). However, 24-h fermentation results in a sig-
nificant increase in TFC, peaking at 36 h and remain-
ing nearly stable until 72 h. After 36 h, L. plantarum
fermentation increases significantly (p < 0.05) the TFC
of OMMA to 3.87 mg QE/g dw, which remained almost
unchanged until 72 h of fermentation (Table 5).

For TTC, results show that regardless of the steril-
ization method used, 24-h fermentation significantly
reduces the TTC of OMMA from 2.00 to 1.70 mg TAE/g
dw, and further to 1.56 mg TAE/g dw after 36 h (p <
0.05), remaining unchanged until the end of the 72-h
fermentation period (p > 0.5) (Table 4). However, con-
trolled fermentation can partially restore or enhance
phenolics, with the degree of recovery depending on
the initial autoclaving intensity and fermentation time
(Khalil et al., 2025; Liangyu et al., 2023). Jan et al. (2022)
investigated the effects of autoclaving (at 121°C for
15 min), followed by fermentation of Finger millet flour
for 12, 24, and 36 h on phenolic compounds. They dis-
covered that the TPC of millet increased with fermen-
tation period, while tannins decreased (by 53.6-56%),
aligning with our findings.

Generally, gradual increase in TPC and TFC after 72 h
of L. plantarum fermentation could be due to fer-
mentation reactions, such as decarboxylation, hydro-
lysis, microbial oxidation, reduction, esterification,
and release of conjugated phenols (Alshammari et al.,
2025). It is discovered that LAB produce p-glucosidase
and decarboxylase. These enzymes can facilitate the
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release and transformation of phenolic compounds
from the plant cell wall during pomace fermentation,
thereby boosting TPC (Kalinowska et al., 2023). In
addition to improving TPC, L. plantarum metabolizes
phenolic compounds into non-phenolic ones, such
as converting protocatechuic acid (a hydroxybenzoic
acid) into catechol through decarboxylation (Pulido-
Mateos et al., 2024). This may occur when the TPC of
millet flour decreases after more than 60 h of fermen-
tation (Supplementary Table S5). Reduction in antinu-
tritional factor TTC after L. plantarum fermentation
of pearl millet flour could be due to partial hydrolysis
by tannase, a tannin acyl hydrolase produced by LAB,
which reduces tannin polymerization, thereby lowering
its content and anti-nutritional properties (Yang et al.,
2023). This decrease in tannin content was observed
previously in finger millet fermentation, with a greater
reduction with increased fermentation period (Endalew
et al., 2024). An increase in TPC and TFC after cereal
fermentation by Lactobacillus spp., including L. plan-
tarum, has been reported previously (Srivastava et al.,
2024; Yang et al., 2024).

Post-autoclaving fermentation with L. plantarum has
been reported to enhance DPPH antioxidant activity by
releasing bound phenolics and flavonoids and by forming
new antioxidant metabolites (Mutshinyani et al., 2020).

The DPPH scavenging rate of raw millet is 76.82%, which
significantly decreased to 63.4% in raw millet treated
with MMA (OMMA) (p < 0.05; Supplementary Table S5).
Moist heat and pressure during autoclaving may reduce
antioxidant molecules’ ability to neutralize free radicals
(Chuwech et al., 2023). However, SMA exhibits a lower
DPPH scavenging rate than MMA (77.51% and 78.32%,
respectively), regardless of fermentation period (p < 0.05;
Table 5). The high moist heat, probably occurring during
MMA treatment (with a millet flour—moisture ratio of
1:4) may create a more effective heat-transfer environ-
ment in MMA than in SMA, which involves autoclaving
of millet flour and water separately before combining
them. This could enhance the activity of specific antioxi-
dant molecules and, in turn, improve the overall antioxi-
dant activity (Popoola, 2022).

Research indicates that pressure and thermal treat-
ment can alter the integrity of macromolecular struc-
tures, thereby affecting polyphenol dissolution rates and
antioxidant efficacy (Zheng et al., 2023). Furthermore,
although SMA sample has a significantly higher TPC
than MMA sample, the DPPH activity is significantly
higher in MMA sample (Table 5). This rise in TPC may
primarily result from the release of bound phenolics and
the formation of Maillard reaction products (Carciochi
et al., 2016). Horvat et al. (2020) discovered that the

DPPH scavenging rate decreases because the most
potent, heat-sensitive antioxidants may be destroyed,
and the newly available phenolics often become inac-
tive through binding or transformation into less effective
compounds. Moreover, Zhang et al. (2017) discovered
that extrusion cooking of highland barley increased total
phenolic content while decreasing DPPH activity. They
attributed this to decrease in free phenolic acids, such as
vanillic acid and syringic acid, which form insoluble com-
plexes that reduce antioxidant activity. Han et al. (2023)
stated that the impact of thermal processing on cereal
antioxidant activity depends on a balance, as it may gen-
erate new antioxidant Maillard reaction products while
also destroying native phenolics. The result is either an
increase, a decrease, or no change in antioxidant activity,
depending on specific processing conditions and cereal
variety.

Additionally, regardless of the autoclaving method, the
DPPH scavenging rate of OMMA (63.40%) increases
by 79.08% after 12 h of fermentation (p < 0.05). This
rate continues to rise, reaching its peak at 36 h, and
then slightly declines as fermentation progresses to 72
h (77.10%) (p < 0.05) (Table 5). As observed, L. plan-
tarum fermentation of millet flour after MMA treat-
ment shows better DPPH scavenging activity than SMA
(Table 5; Supplementary Table S5). This is likely due to
the effectiveness of moist heat from the MMA treat-
ment, which enhances L. plantarum’s ability to produce
low molecular phenolic metabolites with increased
bioactivity, such as (+)-catechin, (-)-epicatechin, and
others (Pulido-Mateos et al., 2024). Studies indicate
that L. plantarum produces enzymes, such as -gluco-
sidase, during fermentation that hydrolyzes phenolic
glycosides into aglycones with radical-scavenging prop-
erties, thereby enhancing the antioxidant activity of the
fermented product (Paventi et al., 2025). The decrease
in DPPH scavenging activity after 36 h of fermentation
in millet samples could result from the conversion of
phenolic compounds into non-phenolic ones, as men-
tioned above (Pulido-Mateos et al., 2024). Additionally,
an increase in lactate in the medium can cause cellular
acidic stress, leading to a linear decrease in the growth
rate of L. plantarum, which negatively impacts all met-
abolic activities (Giraud et al., 1991). This is evident
in the reduction of TPC and DPPH scavenging rates
after 72 h of fermentation in millet samples (Table 5;
Supplementary Table S5).

In conclusion, the 24-36-h fermentation period often
marks a turning point, during which levels of pheno-
lics, flavonoids, and tannins as well as antioxidant activ-
ity undergo significant changes. This corresponds to
the findings of increased phenolics and DPPH activity
at 38.86 h of fermentation by L. plantarum (Srivastava
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et al., 2024). Additionally, higher concentrations of fla-
vonoids, total phenols, and improved radical scaveng-
ing activity were observed when using L. plantarum and
other strains (Yang et al., 2024).

Untargeted LC-MS/MS profiles of processed pearl millet
samples

Although untargeted LC-MS/MS is an effective method
for identifying active ingredients in complex natural
mixtures, it has several limitations. Owing to issues
such as ionization bias and combined effects, results
depend heavily on data processing. They can be influ-
enced by false positives (detecting inert chemicals) and
false negatives (missing potent and low-concentration
compounds; Caesar et al., 2019). Nevertheless, despite
possible quantitative errors from using the percentage
of total area, we used these data to preliminarily indi-
cate that our fermented samples contained bioactive
compounds, possibly from millet or microbes, which
may contribute to their DPPH radical scavenging activ-
ity (Section 3.6) as well as some contaminants that could
be impacted by autoclaving/fermentation processes.

A total of 18 bioactive compounds and contami-
nants were identified in SMA-pretreated fermented
pearl millet samples after 72 h, compared to 15 in
MMA-pretreated samples under the same condi-
tions. These compounds mainly originate from millet,
microbial sources, and contaminants. The SMA- and
MMA -pretreated fermented samples share several
compounds, such as indoxacarb, 3-carboxy-1-hydroxy-
propyl-thpp, methotrexate, absinthin, and metconazole
(Tables 6 and 7; Supplementary Figures F1 and F2). The
profile of bioactive compounds changed significantly
over time. Some beneficial phytochemicals (e.g., sali-
cin 6-phosphate and absinthin) and contaminants (e.g.,
insecticides, such as indoxacarb) decreased or were
completely metabolized during the 72-h L. plantarum
fermentation (Acebrén et al., 2017; Wei et al., 2022).
Conversely, some compounds (e.g., inulicin and sola-
sodine) are only detected later in fermentation (72 h),
potentially released from conjugated forms by microbial
enzymes (Kumar et al., 2019). It has been reported that
fermentation of millet flour with LAB can yield probi-
otic-rich products and enhance bioactive compounds
(Tomar et al., 2025). Moreover, fermentation effectively
reduced levels of pesticides and fungicides (e.g., indox-
acarb, cyfluthrin, and metconazole), with most disap-
pearing within 60-72 h (Armenova et al., 2023).

In conclusion, fermentation with L. planta-
rum modifies the bioactive profile of SMA- and

Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet

MMA-pretreated pearl millet by increasing com-
pound diversity and decreasing beneficial phyto-
chemicals while effectively degrading pesticide and
fungicide contaminants over 72 h.

Conclusions

This study demonstrates that SMA and MMA pre-
treatments affect millet matrix and L. plantarum fer-
mentation, revealing their links to bacterial growth,
sugar consumption, nutritional content, and antiox-
idant and bioactive compound production through a
detailed systems-level analysis. Both pretreatments
achieved the same peak cell density but differed in
their effects. The data showed that SMA was favored
for fast startup processes, such as producing fer-
mented beverages or quick acidification, due to its
rapid growth and acid production. MMA is more
appropriate for developing functional ingredients
that require higher antioxidant activity and mineral
bioavailability, despite a slower initial fermentation.
This shows that sterilization method is more than
just a technical step; it is a key factor in developing
effective fermentation processes.

However, the study has some limitations, including the
method of carbohydrate measurement, which is cal-
culated “by difference” and may not accurately reflect
metabolizable carbohydrates. In addition, explana-
tions for starch gelatinization, nutrient bioavailability,
and compound release rely on indirect data, and direct
measurements of resistant starch and key enzyme activ-
ities were absent. Moreover, LC-MS/MS data compar-
isons based on percentage of total area are prone to
ionization bias, affecting the accuracy of concentration
measurements.

Future research should assess the impact of autoclav-
ing pretreatments on millet’s metabolic and structural
changes, evaluating starch and enzyme activity, quantify-
ing metabolic products, and analyzing structural changes
using techniques such as scanning electron microscope
(SEM) and X-ray diffraction (XRD). Results should be
validated through pilot- and larger-scale trials, as well
as consumer sensory evaluations, to determine product
quality and acceptability.

Data Availability Statement

The dataset used and analyzed during the current study
are available from the corresponding author upon rea-
sonable request.
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Table S1.  Nutrient contents (g/100 g, dw) in autoclave-treated pearl millet, followed by fermentation with L. plantarum ATCC 8014.

Millet flour Fermentation Dry matter Ash Fat Protein Carbohydrates
time

or 0 97.29+0.083° 1.8920.031 7.76£0.23 6.19£0.11° 84.16£0.24°

OMMA 0 96.11+0.0562" 2.25£0.07¢ 7.00£0.19° 5.68+0.28° 85.070.20%

SMA 12 93.3920.001¢ 2.57£0.11¢ 6.4520.09°¢ 7.06£0.33%° 83.92+0.27°
24 95.30£0.064"° 2.52£0.05° 6.07+0.58%¢ 7.61£0.18° 83.80£0.29°
36 94.76+0.066° 2.250.13° 6.50£0.30°¢ 7.03£0.10%° 84.2210.10°
48 92.77£0.050° 2.65£0.13°%¢ 4.69£0.08%¢ 7.43:0.43° 85.23£0.29°
60 93.75+0.048° 2.61+0.05% 4.50£0.17¢ 7.44£0.19° 85.45£0.02°
72 95.76+0.066°¢ 2.50£0.08° 4.70£0.08° 7.12+0.50° 85.68+0.04°

MMA 12 93.66+0.509° 2.82+0.11°¢ 6.35+0.16%¢ 6.450.14°¢ 84.3840.23°
24 94.05£0.261° 3.03£0.092* 4.92+0.08' 7.46£0.28° 84.590.31%°
36 94.54+0.066° 3.03£0.1420 5.460.14°f 7.41£0.76° 84.100.91°
48 96.37+0.0532" 3.1210.10° 4.69+0.08° 6.2210.14° 85.97£0.120¢
60 95.06£0.124°° 2.49£0.10° 3.54£0.16" 6.19£0.19° 87.78+0.15°
72 93.4520.018¢ 2.000.09' 3.60£0.08" 6.11£0.19° 88.29£0.212

Notes: Means + SD (n = 3) were statistically analyzed using one-way ANOVA. According to Tukey'’s test (p < 0.05), the mean values
accompanied by different superscript alphabets differ significantly within a column.

Or: raw millet flour; OMMA: raw millet flour sterilized with MMA; MMA: mixed-mode autoclaving: sterilizing flour and water together; control);
SMA: single-mode autoclaving (sterilizing each flour and water separately); 1272 h: fermentation time; dw: dry weight.

Table S2. Levels of glucose and fructose in autoclave-treated pearl millet, followed by fermentation with L. plantarum ATCC 8014.

Fermentation Glucose (mg/kg, dw) Fructose (mg/kg, dw)
i SMA MMA Total mean (n = 6) SMA MMA Total mean
Or 94.11£17.35 94.11£17.35 94.11£17.35¢ 59.92+2.84 59.92+2.84 59.92+2.84°
OMMA 86.81£5.94 86.8145.94 86.8115.94¢ 73.18£1.14 73.1811.14 73.18%1.14
12 181.5846.71 71.7240.77 126.65£60.33° 25.27+1.31 55.10£0.95 40.19%16.37°
24 369.30£29.24 70.67£1.97 219.98+64.61° 0.00+0.00 27.43+0.43 13.71£15.03°
36 388.25+22.11 107.01£3.73 247.63154.7° 0.00+0.00 33.28+0.95 16.64%18.24¢
48 154.61+2.91 0.00+0.00 77.31£84.74° 0.00£0.00 18.13£2.30 9.0610.03
60 152.88+1.94 0.00£0.00 76.44+83.75° 0.00£0.00 4.56£0.06 2.28£2.509
72 112.99+1.37 0.00+0.00 56.50£61.90° 0.00£0.00 0.00£0.00 0.00£0.00"
Total mean 192.57£115.04° 53.79%44.18° 19.80£12.90° 33.95£25.12°
(n=24)
Grand mean (n = 48) 123.18 26.873
(SE =1.239) (SE=0.177)

Notes: Statistical differences among factor mean values were analyzed using Type Il two-way ANOVA. According to pairwise comparisons,
different superscript alphabets indicate that total mean values differ significantly (p < 0.05) within a row or a column.

Or: raw millet flour; OMMA: raw millet flour sterilized with MMA; MMA: mixed-mode autoclaving: sterilizing flour and water together; control);
SMA: single-mode autoclaving (sterilizing each flour and water separately); 1272 h: fermentation time; dw: dry weight.
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Table S4. Heavy metal contents (pg/kg, dw) in autoclave-treated pearl millet, followed by fermentation with L. plantarum ATCC 8014.

Millet flour Fermentation As Cd Hg Pb Sb
time

Or 0 6.62+0.31¢ 66.87+1.57° 33.74£1.22°¢  16.59+0.23° 1256.62+33.88°¢

OMMA 0 6.67+0.04¢ 67.18+0.421 32.76+2.93°¢  17.31£0.36°° 1247.49+34 425¢

SMA 12 6.80£0.20°¢ 67.67+0.131 31.42+0.68%  17.3740.23%¢ 1246.37+33.54°¢
24 6.8310.112> 69.23+0.90"  34.20£0.50*°  17.34+0.12%¢ 1317.21+52.132°
36 6.79£0.07°¢ 76.26+0.44%  33.88+0.18° 17.57+0.23%¢ 1352.05+50.412°
48 6.81+0.19°¢ 76.25£0.35°¢  34.94+0.06° 18.020.34%< 1345.49+83.95%°
60 6.83+0.092° 75.65+0.35¢ 31.34+0.06¢ 18.32+0.382° 1325.51+10.302°
72 6.77+0.06 75.38+0.624 33.09£0.91¢ 18.12+0.12%° 1370.3653.862°

MMA 12 6.8310.15%0 66.92+0.52 32.9940.31¢ 17.47+0.13%° 1253.86+34.61°¢
24 6.8510.46%° 76.93+0.273>  33.61:0.12°¢  17.5610.44%° 1300.48+70.012°
36 6.87+0.132 77.3410.842 30.92+1.08¢ 18.31£0.502° 1263.19+31.84°
48 6.78+1.10°¢ 76.490.21° 32.50£0.50°¢  17.15£0.32°¢ 1300.78+15.492°
60 6.8520.0420 75.8910.35¢ 33.43+0.63>¢  17.19£0.11b¢ 1356.59+37.362°
72 6.810.12°¢ 76.19£0.11°¢  32.59+0.41¢ 17.77+0.232> 1388.09£12.082

MPL (mg/kg) 0.20 (inorganic) 0.10 0.01 0.02 0.02 (inorganic)

Notes: Means + SD (n = 3) were statistically analyzed using one-way ANOVA. According to Tukey’s test (p < 0.05), the mean values
accompanied by different superscript alphabets differ significantly within a column.

Or: raw millet flour; OMMA: raw millet flour sterilized with MMA; MMA: mixed-mode autoclaving: sterilizing flour and water together; control; SMA:
single-mode autoclaving (sterilizing each flour and water separately); dw: dry weight; MPL: maximum permissible limit (Mititelu et al., 2025).

Table S5. Contents of total polyphenols (TPC), total flavonoids (TFC), and total tannins content (TTC) in autoclave-treated pearl millet,
followed by fermentation with L. plantarum ATCC 8014.

Millet flour Fermentation TPC TFC TTC DPPH scavenging
time (h) (mg GAE/g dw) (mg QE/g dw) (mg TAE/g dw) rate (%)

Or 0 2.81£0.02f 2.20+0.189 2.04+0.122 76.82+0.74°

OMMA 0 2.7310.03 2.670.03 2.00+0.072 63.40+0.80°

SMA 12 2.83+0.08f 2.59+0.02% 1.79£0.08° 77.0241.07¢
24 3.47+0.17%¢ 2.53+0.019 1.78+0.09° 79.39+0.89¢
36 3.24£0.12¢ 3.36+0.08¢ 1.51+0.05¢% 83.14+0.49°
48 3.55+0.062 3.30£0.03% 1.46£0.04° 81.76+0.68°
60 3.3520.05%¢ 4.66+0.20° 1.46£0.02° 81.7840.71°
72 3.010.02¢ 3.7910.35° 1.45£0.03° 76.78£0.75°

MMA 12 3.01+0.05¢ 2.66£0.10% 1.68+0.02%¢ 81.15£1.36°
24 3.2240.05¢ 3.3640.03¢ 1.62+0.06°¢ 80.35+0.30°¢
36 3.51£0.012° 4.37+0.15 1.61+0.03¢%¢ 85.84+0.38°
48 3.3240.04¢4 3.2440.10% 1.55£0.02%-¢ 81.91£0.39°
60 2.43+0.029 3.0740.03¢f 1.5640.03%¢ 79.62+0.19¢
72 2.50+0.049 3.9640.52°° 1.5740.01%° 77.43£0.57°

Notes: Means £ SD (n = 3) were statistically analyzed using one-way ANOVA. According to Tukey's test (p < 0.05), the mean values
accompanied by different superscript alphabets differ significantly within a column.

GAE: gallic acid equivalents; QE: quercetin equivalents; TAE: tannic acid equivalents; Or: raw millet flour; OMMA: raw millet flour sterilized with
MMA; MMA: mixed-mode autoclaving: sterilizing flour and water together; control); SMA: single-mode autoclaving (sterilizing each flour and
water separately); dw: dry weight.
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Untargeted LC-MS/MS profiles of processed
pearl millet samples

Although untargeted LC-MS/MS is an effective method
for identifying active ingredients in complex natural
mixtures, it has several limitations. Because of the issues
such as ionization bias and combined effects, results
depend heavily on data processing. They can be affected
by false positives (detecting inert chemicals) and false
negatives (missing potent and low-concentration com-
pounds) (Caesar et al., 2019). Nevertheless, despite pos-
sible quantitative errors from using percentage total area,
we used these data to preliminarily indicate that our fer-
mented samples contain bioactive compounds, possibly
from millets or microbes, which may contribute to their
DPPH radical scavenging activity (Section 3.6) as well as
some contaminants that could be impacted by autoclav-
ing/fermentation processes.

A total of 19 bioactive compounds and contaminants
were identified in SMA-pretreated fermented pearl
millet samples after 72 h, compared to 15 in MMA-
pretreated samples under the same conditions. These
compounds mainly originate from millet, microbial
sources, and contaminants. The SMA- and MMA-
fermented samples share several compounds, such as
indoxacarb, 3-carboxy-1-hydroxypropyl-thpp, meth-
otrexate, absinthin, and metconazole (Tables 5 and 6;
Supplementary Figures S1 and S2).

In Table 5, salicin 6-phosphate, a bacterial metabolite
with anti-inflammatory properties that inhibits tumor
growth and angiogenesis (Kong et al., 2014), is detected
in 12-h SMA-fermented millet, with a total peak area
of 1.07%. Its level decreases with increasing fermen-
tation period, ultimately reaching a minimum at 72 h.
L. plantarum utilizes salicin-6-phosphate as a carbon
source through its 6-phospho-B-glucosidase enzyme
(Acebrén et al., 2017). Some phytochemicals, such as
6-methylpretetramide, paucin, and absinthin, which
are sesquiterpene lactones with antibiotic and anti-
inflammatory properties (PubChem National Center
for Biotechnology Information (NCBI), 2005; Talmon
et al., 2020), are present in SMA and MMA samples
fermented for 12-60 h but disappear by 72 h. This is
potentially due to L. plantarum’s ability to metabolize
these compounds. It has been reported that L. planta-
rum CCFM1287 can metabolize certain sesquiterpene
lactones (Wei et al., 2022). Other phytochemicals, such
as inulicin, a terpene lactone possessing anti-inflamma-
tory activities (Yan et al., 2024), are discovered in pearl
millet flour after 48 h of fermentation. This phenome-
non may stem from the activity of hydrolytic enzymes,
such as saccharases and proteases, which may release
inulicin from conjugated molecules such as proteins and
polysaccharides, as some terpene lactones can associate

Lactiplantibacillus plantarum ATCC 8014 fermentation of pearl millet

with these molecules (Bajtai et al., 2022). The levels of
certain compounds, such as plumieride, which has anti-
fungal, anti-virulence, and anti-inflammatory properties
(El-Shiekh et al., 2024), are unaffected by fermentation.
Meanwhile, other substances such as plant-based oba-
cunone, a limonoid, decrease during fermentation and
are undetectable by 72 h. However, limonin, a natural
tetracyclic triterpenoid belonging to limonoids, can be
metabolized by L. plantarum, resulting in a reduction
of its content in orange juice (Quan et al., 2022).

Regarding contaminants, indoxacarb is an insecticide
present at 0.26-0.39% of the total peak area in both
12-48 h SMA- and MMA-fermented samples, while
cyfluthrin, another insecticide, is only detected in SMA-
fermented samples at levels of 0.29-0.38% (Table S5).
These compounds disappear after 60-72 h of fermen-
tation. It has been reported that L. plantarum fermen-
tation can reduce insecticide levels in cereal flours by
breaking down pesticide residues through enzymatic
activity, especially organophosphorus insecticides
(Armenova et al., 2023; Dordevi¢ et al., 2013). L. plan-
tarum ATCC 8014 is shown to reduce pesticide lev-
els in bread and wheat flour, notably lowering levels of
pirimiphos-methyl, phorate, chlorpyrifos, and bifenthrin
(Armenova et al., 2023). Furthermore, metconazole,
a fungicide, is detected in both SMA- and MMA-
fermented samples at levels ranging from 0.94% to 0.94%.
It gradually diminishes with extended fermentation,
reaching its lowest point at 72 h. Some strains of L. plan-
tarum can act as binding agents, adsorbing or trapping
fungicides within their cell structure and metabolizing
them, breaking down these into less toxic compounds (Li
et al., 2023; Maidana et al., 2022). 1-(5’-Phosphoribosyl)-
5-formamido-4-imidazolecarboxamide (faicar), com-
monly known as faicar, playing a key role in nucleotide
synthesis in living organisms like humans and bacteria
and exhibits anti-inflammatory and anti-cancer activities
(Brooks et al., 2018). Maidana et al. (2021) reported that
L. plantarum aids in detoxifying E. coli metabolites by
producing antimicrobial compounds.

Some phytochemicals, such as solasodine—an alka-
loid compound with antioxidant, hepatoprotective,
immunomodulatory, cytotoxic, antinociceptive, anti-
inflammatory, antiatherosclerotic, antimicrobial, and
anti-obesity properties (Kumar et al., 2019)—are only
present in the 72-h MMA-fermented sample at a level
of 8.32%. They are not found in samples fermented for
less than 72 h (Table 6). This may be because solaso-
dine binds to other molecules, such as glycosides, pre-
venting its detection during 12-60 h of fermentation.
Since L. plantarum releases glycoside hydrolases (Cui
et al., 2021), it could facilitate the release of conjugated
solasodine. Additionally, solasodine can bind to other
components, such as rhamnose molecules, forming

Italian Journal of Food Science, 2026; 38 (1)

419



Mohammed MA et al.

solasodine rhamnosyl glycosides (Cham, 2013). Beta-
geranylfarnesene, timosaponin A-III, and celapanine—
triterpenoids with biological activities—are detected in
MMA samples fermented for 48—72 h (Table 6). These
terpenoids may bind to proteins and polysaccharides
and are released by glycolytic hydrolase enzymes (Bajtai
et al., 2022).

In conclusion, regarding contaminants, L. plantarum
has been shown to reduce pesticide levels in millet flour,
with these levels decreasing progressively during fermen-
tation, reaching a minimum level, after which they dis-
appear. It has been reported that fermenting millet flour
with LAB can yield probiotic-rich products and enhance
bioactive compounds (Tomar et al., 2025).
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