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Red ginseng polysaccharide attenuates sepsis-induced acute lung injury via suppressing oxidative

stress-mediated ER stress through activation of Nrf2/AMPK pathways
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Abstract

The present study elucidates the protective efficacy of red ginseng polysaccharide (RGP) against septic-associated
acute lung injury (ALI), a critical condition exacerbated by oxidative stress and endoplasmic reticulum (ER) stress.
Utilizing lipopolysaccharide (LPS)-induced mouse and cellular models, we assessed lung pathology through his-
tological staining, injury scoring, and lung wet-to-dry ratios along with inflammatory cytokine levels. Cell viabil-
ity and apoptosis were quantified using cell counting kit-8 and TUNEL assays, respectively, while fluorescence
labeling was employed to gauge reactive oxygen species (ROS) and mitochondrial membrane potential (MMP).
Our findings indicated that RGP markedly attenuated LPS-induced lung damage, inflammation, oxidative injury,
ER stress, and apoptotic processes. Mechanistic insights revealed that RGP exerted its protective effects by acti-
vating the nuclear factor erythroid-2-related factor 2 (Nrf2)/adenosine monophosphate-activated protein kinase
(AMPK) pathway in LPS-stressed lung tissues. Inhibition of Nrf2 or AMPK abrogated RGP’s benefits on apopto-
sis, ROS production, and MMP preservation in murine lung type II epithelial (MLE-12) cells, underscoring the
Nrf2/AMPK-mediated mechanism of RGP’s action against LPS-induced ALIL These results underscore the poten-
tial of RGP as a novel therapeutic agent for sepsis-associated ALL
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Introduction

Sepsis, a condition characterized by dysregulation of
host defense mechanisms, is intricately associated with
organ dysfunction (Liu et al, 2022a). The lungs, as the
most sensitive and critical organs in sepsis, frequently
succumb to acute lung injury (ALI) (Hwang et al., 2019).
Sepsis-induced ALI is typified by inflammatory cell infil-
tration, alveolar epithelium damage, pulmonary edema,

and compromised gas exchange (Zhou and Liao, 2021).
Emerging evidence underscores the pivotal role of exces-
sive oxidative stress and endoplasmic reticulum (ER)
stress in the pathogenesis of ALI (Guo et al., 2021; Wang
et al., 2022a). Reactive oxygen species (ROS) are known to
elicit oxidative stress within lung epithelial cells, thereby
inducing ER stress and subsequent mitochondrial dam-
age (Huang et al., 2020; Yang et al., 2020). Consequently,
targeting the inhibition of inflammation and/or oxidative
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stress-mediated ER stress emerges as a promising avenue
for the prevention and treatment of sepsis-induced ALI,
offering new therapeutic prospects in the management of
this critical condition.

An extensive body of literature has concluded that infec-
tions caused by Gram-negative bacteria are a primary
contributor to the development of ALI, with lipopoly-
saccharide (LPS), a key component of the bacterial outer
membrane, playing a pivotal role in initiating lung injury
and inflammatory responses (Fukatsu et al, 2022; Li
et al., 2021). Exposure to LPS results in a vigorous acti-
vation of macrophages and the infiltration of inflamma-
tory cells, notably neutrophils, into the lung (Hong et al.,
2022; Wang et al., 2022b). This influx of neutrophils leads
to the uncontrolled release of inflammatory cytokines
and the generation of ROS, thereby precipitating oxida-
tive stress (Dhlamini et al., 2022; Zhou et al., 2021). It is
particularly intriguing that the activation or inhibition of
multiple signaling pathways is closely associated with the
regulation of inflammatory responses and oxidative stress
in the context of LPS-induced ALI The transcription
factor nuclear factor erythroid-2-related factor 2 (Nrf2)
is identified as a critical antioxidant regulator, and its
activation is shown to prevent oxidative stress-induced
cellular or tissue damage (He et al., 2020). Adenosine
monophosphate-activated protein kinase (AMPK), a cel-
lular energy sensor present in various eukaryotes, also
plays a role in alleviating a range of inflammatory and
oxidative stress-induced diseases, including ALI (Sang et
al., 2022; Trefts and Shaw, 2021). Evidence suggests that
activated Nrf2 suppresses the overproduction of mito-
chondrial ROS and subsequently activates the AMPK
signaling pathway (Chu et al., 2022). Collectively, these
findings underscore the potential of the Nrf2/AMPK sig-
naling pathway to serve as a therapeutic target for attenu-
ating ALI through its anti-inflammatory and antioxidant
properties.

Medicinal herbs and their derivatives are increasingly
recognized for their critical role in preventing dis-
eases, especially those resulting from inflammation
and oxidative stress, such as ALI (Yang et al., 2021;
Yimam et al., 2023). Among these, red ginseng (RG),
owing to its ‘warming effect] has seen a rise in its incor-
poration into herbal formulas, including the famous
Shenfu injection (Xu et al., 2020; Zhang and Li, 2023).
Previously, more research was conducted on ginseno-
sides and less on red ginseng polysaccharide (RGP),
which is one of the active ingredients of RG (Chen et
al., 2019). The pharmacological potential of RGP, par-
ticularly its antitumor and antioxidant properties, has
recently garnered attention (Wang et al., 2023; Zhai et
al., 2022). Notably, RGP is shown to activate the Nrf2
pathway, enhancing antioxidant defenses and miti-
gating inflammatory responses, as evidenced by its
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efficacy in improving myocardial infarction outcomes
(Lian et al., 2022). However, the protective effects
of RGP against septic ALIL, both in vitro and in vivo,
remain largely uncharted.

In this study, we aimed to elucidate the protective mech-
anisms of RGP on LPS-induced ALI with a particular
focus on its modulation of the Nrf2/AMPK signaling
axis. Our findings provide novel insights into the thera-
peutic potential of RGP, offering a promising avenue for
the development of innovative treatments targeting sep-
sis-associated ALIL

Materials and Methods
Construction of ALI model and animal grouping

Ethical approval for animal experiments was obtained
from the Ethics Committee of the First Affiliated
Hospital of Zhengzhou University (approval No.: 2022-
03-B111). Male wild-type C57BL/6 mice, aged 6—8 weeks
were randomly divided into five groups, namely, Control,
LPS, LPS+dextromethorphan (DXM), LPS+RGP (200
mg/kg) and LPS+RGP (400 mg/kg). In brief, phosphate-
buffered saline (PBS) solution was used to treat control
animals. Mice in the LPS group were given 10 mg/kg LPS
intraperitoneally (i.p.). Then, control drug dextrometho-
rphan (DXM; D4902; Sigma-Aldrich, Shanghai, China)
at a dose of 5mg/kg or RGP (30% purity; Fufeng Sinoute
Biotech Co. Ltd, Shanxi, China) at a dose of 200 mg/kg
or 400 mg/kg (Lian et al., 2022) was administrated intra-
gastrically 2 h before, and 0 h and 6 h after LPS injec-
tion. Each group’s 48-h survival rate was determined (10
mice per group). At 12 h after LPS challenge, the plasma
and lungs were collected from the surviving mice in each
group (randomly selected, 6 mice in each group). The
lung tissue sections were prepared for histological analy-
sis, fluorescence staining, Western blotting analysis and
terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling (TUNEL) apoptosis assay. The plasma
samples were applied for enzyme-linked immunosorbent
serological assay (ELISA).

Cell treatment

ALI cellular model was constructed by continuous stim-
ulation of murine lung type II epithelial (MLE-12) cell
line (CRL-2110™; ATCC, Manassas, VA, USA), a mouse
lung epithelial cell line, for 24 h with LPS (L4516; Sigma-
Aldrich) at a final concentration of 500 ng/mL (Liu et
al., 2022b; Xiao et al., 2020). In certain groups, MLE-12
cells were pretreated with Nrf2 inhibitor ML385 (20 uM;
SML1833; Sigma-Aldrich) for 2 h or AMPK inhibitor
Compound C (10 pM; 171260; Sigma-Aldrich) for 1 h,
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and then co-incubated with 40-ug/mL RGP for 24 h prior
to LPS stimulation.

Histological analysis

Lung tissues were fixed in 10% formalin for 24 h, embed-
ded in paraffin, and cut into 5-um thick sections for
hematoxylin and eosin (H&E) staining. Histopathological
changes were observed under a light microscope
(Olympus Corporation, Tokyo, Japan), and the severity of
lung injury was assessed using a semi-quantitative scale
(He et al., 2022; Li et al., 2015).

Analysis of wet-to-dry ratio of lungs

The collected lung tissues were blotted and weighed to
obtain wet weight and then dried in an oven at 80°C for
48 h to obtain dry weight. The wet-to-dry ratio of the lungs
was calculated to assess the degree of pulmonary edema.

ELISA assays

Using mouse ELISA kits (Beyotime Biotechnology,
Shanghai, China), the protein levels of tumor necrosis
factor-a (TNF-a), interleukin-1f (IL-1pB), and IL-6 were
determined in plasma samples, according to the manu-
facturer’s instructions.

Measurement of reactive oxygen species generation

The production of ROS in tissues and cells was measured
with the fluorescent probe 2,7’-dichlorofluorescein diac-
etate (DCF-DA) using ROS assay kit (S0033S; Beyotime
Biotechnology). Lung tissue homogenate supernatants and
rinsed MLE-12 cells were incubated with 10-puM DCE-DA
for 20 min at 37°C in the dark. Samples were photographed
using a fluorescent microscope (Zeiss, New York, NY, USA).

Quantitative real time polymerase chain reaction
(qRT-PCR)

Total RNA was isolated from tissues using the TRIzol™
reagent (Invitrogen, Waltham, MA, USA). PrimeScript™
RealTime (RT) reagent kit (Takara, Japan) was used to
create complementary DNA (cDNA). qRT-PCR was
performed on the Light Cycler 480 II RT-PCR system
(Roche, Basel, Switzerland) using SYBR Premix Ex Taq II
(TaKaRa, Shiga, Japan). The 2-24¢ method was used to
calculate relative RNA abundance. The expression level
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was taken as a negative control. The following primers

were used in this study: Bcl-2-associated X-protein (Bax):
5-AGACAGGGGCCTTTTTGCTAC-3 (forward),
5-AATTCGCCGGAGACACTCG-3 (reverse);
B-cell lymphoma 2 (Bcl-2): 5-GTCGCTACCGTCG
TGACTTC-3" (forward), 5-CAGACATGCACCTACC
CAGC-3’ (reverse); and GAPDH: 5-AGGTCGGTGTGA
ACGGATTTG-3 (forward), 5-GGGGTCGTTGATGG
CAACA-3’ (reverse).

Western blot analysis

Lung tissues were homogenized and lysed using radio-
immunoprecipitation assay (RIPA; Thermo Scientific,
Shanghai, China), and the lysate was centrifuged at
12,000 xg for 5 min at 4°C. The supernatant was stored at
—20°C. The contents of target proteins were determined
according to the bicinchoninic acid assay (BCA), and
separated by electrophoresis. After transferring to nitro-
cellulose membranes (Millipore, Bedford, MA, USA),
proteins were hybridized with primary antibodies over-
night at 4°C and secondary antibodies (1:2,000 dilution;
#7074; Cell Signaling Technology, Boston, MA, USA)
for 2 h at room temperature. Immunodetection was per-
formed using the enhanced chemiluminescence reagent
(Beckman Coulter, Brea, CA, USA).

TUNEL assays

Apoptosis in lung tissues was analyzed by TUNEL stain-
ing using One Step TUNEL apoptosis assay kit (C1086;
Beyotime Biotechnology). Images were obtained using a
microscope.

Cell viability assay

Cell viability was determined using Cell Counting Kit-8
assay (CCK-8) (C0037; Beyotime Biotechnology). Following
different treatments, MLE-12 cells with a molecular mass
of 100 pL were incubated in 96-well plates at a density of
2,000/well. Absorbance was detected at the wavelength of
450 nm after the addition of 10-uL CCK-8 solution.

Flow cytometry (FCM)

The Annexin V-FITC apoptosis detection kit (C1062S;
Beyotime Biotechnology) was used to evaluate apoptotic
cells according to the manufacturer’s instructions. MLE-
12 cells were washed with PBS, resuspended in 1x bind-
ing buffer, and stained with 5-pL Annexin V-FITC for 10
min. The cells were analyzed using a flow cytometer (BD
Biosciences, San Diego, CA, USA) after counterstained
with 10-pL propidium iodide (PI) for 10 min.
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Detection of mitochondrial membrane potential (MMP)

The MMP was detected using MMP assay kit with
JC-1 staining working solution (C2006; Beyotime
Biotechnology). Briefly, MLE-12 cells (1x10° cells resus-
pended in 500-pL cell culture medium) were incubated
for 20 min at 37°C with 0.5-mL JC-1. After centrifugation
at 600 xg for 3 min at 4°C, the supernatant was discarded.
After washing twice with JC-1 staining buffer, cells were
resuspended in JC-1 staining buffer and observed with
fluorescence microscopy.

Statistical analysis

Data were presented as mean + standard deviation (SD).
GraphPad Prism 6.0 (GraphPad Software, San Diego,
CA, USA) was used for data analysis using ANOVA, fol-
lowed by Tukey’s test; p < 0.05 was considered as statisti-
cally significant.

Results

Red ginseng polysaccharide ameliorates LPS-induced
lung injury and inflammation in mice

To ascertain the protective efficacy of RGP against
sepsis-associated ALI, we established a mouse model
of LPS-induced ALIL Initially, we monitored the sur-
vival rate over 48 h post-LPS challenge, revealing that
treatment with 400-mg/kg RGP conferred a protective
effect on mouse survival against LPS-induced effects,
akin to the positive control drug dextromethorphan
(DXM; Figure 1A). Histopathological alterations in
each group of mice were further examined via H&E
staining. Inflammatory cell infiltration, interstitial
edema, alveolar wall thickening, and tissue damage
were commonly observed in LPS-induced mice; both
DXM intervention and 400-mg/kg RGP markedly alle-
viated the pulmonary injury induced by LPS (Figure
1B), which was also quantified using lung injury scores
(Figure 1C). Subsequently, we assessed the impact of
RGP on LPS-induced pulmonary edema. As depicted
in Figure 1D, the lung wet-to-dry weight ratio was sig-
nificantly elevated in the LPS group, compared to the
control group, an increase that was mitigated by treat-
ment with either DXM or RGP. To investigate the effect
of RGP on LPS-induced inflammatory responses, we
measured the expression of pro-inflammatory cyto-
kines, including TNF-a, IL-1f, and IL-6, in plasma via
ELISA. As illustrated in Figure 1E, LPS administration
resulted in substantial elevations in the plasma levels of
these cytokines, which were reversed by either DXM or
RGP. The anti-inflammatory action of RGP underscored
its potential as a functional food ingredient, offering
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promise in mitigating inflammation-related diseases,
including sepsis-induced ALIL

Red ginseng polysaccharide suppresses oxidative stress
and ER stress in LPS-induced mouse lung tissues

The assessment of DCF-DA fluorescence intensity
revealed that pretreatment with DXM or RGP markedly
attenuated the LPS-induced overproduction of ROS, as
evidenced in Figure 2A. LPS administration led to the
up-regulation of glucose-regulated protein 78 (GRP78)
and C/EBP homologous protein (CHOP), as well as the
activation of protein kinase RNA-like endoplasmic retic-
ulum kinase (PERK) in mouse lung tissues, accompanied
by increased phosphorylation levels of eukaryotic initi-
ation factor 2 alpha (elF2a), PERK, and inositol requir-
ing protein-la (IREla). Notably, these LPS-induced
alterations were significantly mitigated by pretreat-
ment with DXM or RGP, as depicted in Figures 2B and
2C. Collectively, these findings suggested that RGP has
the potential to prevent oxidative stress and ER stress,
thereby alleviating LPS-induced ALL

Red ginseng polysaccharide inhibits LPS-induced lung
cell apoptosis in LPS-challenged mice

The level of apoptosis was subsequently evaluated using
TUNEL labeling to delineate the impact of RGP on
LPS-induced apoptosis within the pulmonary tissues of
mice. Quantitative analysis of apoptotic cells indicated a
notably higher count in the LPS-treated group whereas
a pronounced decrease in apoptotic cells was observed
following treatment with DXM or RGP (Figure 3A). The
results of qRT-PCR and Western blot analyses demon-
strated that both DXM and RGP effectively mitigated the
LPS-induced elevation of Bax messenger RNA (mRNA)
and protein levels, along with the corresponding decrease
in Bcl-2 expression (Figures 3B and 3C). Collectively,
these results suggested that RGP intervention could effi-
caciously inhibit LPS-induced apoptosis in lung tissue
cells, underscoring its potential therapeutic implications
in mitigating lung injury.

Red ginseng polysaccharide activates Nrf2/AMPK
signaling pathway in LPS-induced ALI mice

Further analysis was conducted to evaluate the activities
of Nrf2 and AMPK, molecular pathways known to miti-
gate lung injury (Qiu et al., 2018; Yang et al., 2022) using
Western blot analysis (Figures 4A and 4B). Our findings
indicated that LPS exposure resulted in a slight, albeit
nonsignificant, increase in Nrf2 expression and a signif-
icant decrease in AMPK phosphorylation within lung
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RGP ameliorates LPS-induced lung injury and inflammation in mice. LPS (10 mg/kg) was intraperitoneally adminis-

trated to induce ALI; 2 h before and 0 h and 6 h after LPS challenge, DXM (5mg/kg) or RGP (200 mg/kg or 400 mg/kg) was given
to each administration group. (A) Survival curves of five groups (n = 10). (B) H & E staining of lung tissues from each group of

mice (scale bar: 200 ym; n = 6). (C) The lung injury score was
(D) The lung wet-to-dry weight ratio (n = 6). (E) Levels of TN

calculated by a semi-quantitative scale in different groups (n = 6).
F-a, IL-1B, and IL-6 in plasma were determined by ELISA (n = 6).

Results are presented as mean * SD obtained from six independent experiments; *p < 0.05; ***p < 0.001.

tissues. However, pretreatment with DXM or RGP led to
the up-regulation of Nrf2 and a marked enhancement of
AMPK phosphorylation in LPS-challenged mice. These
results suggested that both DXM and RGP are capable
of effectively activating the Nrf2/AMPK signaling path-
way, which plays a pivotal role in conferring protection
against LPS-induced ALIL

Red ginseng polysaccharide ameliorates LPS-induced
injury in MLE-12 cells by activating the Nrf2/AMPK
pathway

Based on the above in vivo findings, we proceeded to
explore the potential of RGP to mitigate LPS-induced cel-
lular injury in MLE-12 cells. CCK-8 assays revealed that
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Figure 2. RGP suppresses LPS-induced oxidative stress and ER stress in mouse lung tissues. (A) The fluorescence images of
ROS production stained by DCF-DA (scale bar: 200 pm). (B) The protein levels of GRP78, CHOP, p-elF2«, and total elF2cc were
determined in lung tissues of different groups. (C) The phosphorylation and total levels of PERK and IRE1« were determined in
lung tissues of different groups. Results are presented as mean * SD (n = 6) obtained from six independent experiments; **p <

0.01; **p < 0.001.

RGP at concentrations of 10, 20, and 40 pg/mL exhibited
no cytotoxic effects, with significant cytotoxicity only
observed at 80 pug/mL (Figure 5A). Following LPS stim-
ulation, cell viability was notably diminished; however,
treatment with RGP at 20 pg/mL or 40 pg/mL signifi-
cantly attenuated the LPS-induced decline in cell viability
(Figure 5B). Consequently, we selected a concentration of
40 pg/mL RGP for subsequent experiments. To elucidate
the involvement of the Nrf2/AMPK signaling pathway in

RGP’s mechanism of action, cells were co-treated with
ML385 (an inhibitor of Nrf2) or Compound C (an inhib-
itor of AMPK). In alignment with the in vivo findings,
RGP demonstrated inhibition of LPS-induced cell death
in MLE-12 cells whereas co-administration with ML385
or Compound C notably counteracted the anti-apoptotic
effects of RGP (Figure 5C). Mitochondria are widely con-
sidered the primary site of ROS formation, and MMP is
an important parameter reflecting mitochondrial function
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Figure 3. RGP inhibits LPS-induced lung cell apoptosis in LPS-challenged mice. (A) The apoptosis of lung tissue cells was
detected by TUNEL assay (scale bar: 200 um). (B) The mRNA expressions of Bax and Bcl-2 in lung tissues of different groups
were determined by qRT-PCR. (C) The protein levels of Bax and Bcl-2 in lung tissues of different groups were determined by
Western blot analysis. Results are presented as mean * SD (n = 6) obtained from six independent experiments; ***p < 0.001.

(Correia-Alvarez et al., 2020; Rehfeldt et al., 2021). In
this study, LPS markedly induced ROS production and a
reduction in MMP within MLE-12 cells, indicative of oxi-
dative stress injury and mitochondrial dysfunction. On the
contrary, RGP protected MLE-12 cells from LPS-induced
ROS overproduction (Figure 5D) and MMP reduc-
tion (Figures 5E and 5F), and its protective effects were
restored by the inhibitors of Nrf2 and AMPK.

Discussion

Sepsis-induced ALI is a complex hypoxic condition
characterized by multifaceted pathological mechanisms,
including apoptosis, inflammation, oxidative stress, and
ER stress (Chen et al., 2018; Qian et al., 2020; Zeng et al.,
2017). RGP, a principal bioactive component of RG, has
demonstrated tumor-suppressive (Zhai et al., 2022) and
antioxidant properties (Kang et al, 2023; Lian et al,
2022). The current study identified RGP as a promising
therapeutic agent for alleviating sepsis-associated ALI,
suggesting that its protective effects against LPS-induced

ALI may be mediated through the activation of the Nrf2/
AMPK signaling pathway.

Extensive evidence is observed that LPS could act as a
cytotoxic agent capable of inducing ALI both in vivo and
in vitro, leading to pathological damage, apoptosis, and
inflammation (Li et al., 2023a, 2023b). In this study, RGP
exhibited therapeutic effects comparable to the positive
control drug DXM in LPS-induced ALI mice. This was
evidenced by enhanced survival proportions, dimin-
ished pulmonary pathological lesions, lower lung injury
scores and wet-to-dry ratios, and reduced plasma pro-
inflammatory cytokine levels. In addition, RGP demon-
strated an inhibitory effect on apoptosis within the lung
tissues of mice with sepsis-induced ALIL

Endoplasmic reticulum stress arises from the accumu-
lation of unfolded or misfolded proteins, leading to a
disruption in ER’s structural and functional equilibrium
(Dandekar et al., 2015; Schwarz and Blower, 2016). This
stress is a critical pathogenic mechanism in sepsis-
associated ALI and holds potential as a biomarker and
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therapeutic target for sepsis (Ahmad et al., 2022; Zeng
et al., 2023). In a mouse model of LPS-induced ALI, pre-
treatment with RGP ameliorated lung oxidative damage
by reducing ROS production and mitigated ER stress by
down-regulating ER stress markers GRP78 and CHOP
(Arab et al., 2023) and decreasing phosphorylation lev-
els of the unfolded protein response (UPR) sensors elF2a,
PERK, and IREla (Men et al., 2023). In LPS-stimulated
MLE-12 cells, RGP exhibited anti-apoptotic effects
and enhanced mitochondrial function, evidenced by
decreased ROS release and increased MMP, suggest-
ing a protective role against LPS-induced ALI through
anti-apoptotic, anti-inflammatory, and anti-stress mech-
anisms. Further studies are warranted to fully elucidate
this hypothesis.

To further elucidate the protective mechanism of RGP,
we examined its influence on the Nrf2/AMPK pathway.
Nrf2, a redox-sensitive transcriptional regulator, orches-
trates the expression of antioxidant genes to maintain
cellular redox balance and mitigate ER stress (Huang
et al., 2020). AMPK plays a pivotal role in modulating
energy metabolism and mitochondrial biogenesis in
response to energy deficits (Sang et al., 2022; Tang et al.,
2022).

Accumulating evidence suggests that various herbal bio-
active components confer protection against ALI by acti-
vating the Nrf2/AMPK signaling pathway. For instance,
Lv et al. (2017) reported that xanthohumol effectively
protected LPS-induced ALI against oxidative stress
and inflammation damage, which are largely dependent
upon up-regulation of the Nrf2 pathway via activation of
AMPK/GSK3. Lycium barbarum polysaccharide (LBP)
ameliorated lung inflammation and edema in a mouse
model of hyperoxia-induced ALI through an Nrf2/AMPK-
dependent mechanism (Zheng et al., 2019). Sophoricoside
exhibited anti-inflammatory effects in LPS-induced ALI
mice and macrophages via Nrf2/AMPK signaling (Wu
et al., 2021). Kinsenoside prevented LPS-induced ALI by
activating Nrf2/AMPK and regulating mitochondrial func-
tion (Yang et al., 2022). In our study, RGP up-regulated
Nrf2 expression and induced AMPK phosphorylation in
LPS-induced ALI mice. Furthermore, the inhibition of
Nrf2/AMPK signaling in MLE-12 cells with ML385 and
compound C partially negated RGP’s anti-apoptotic, anti-
oxidant, and anti-ER stress effects in LPS-treated cells.

The current study, however, has limitations. First, the
genomic differences between mice and humans (Lewis
et al., 2016) in response to sepsis necessitate validation
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Figure 5. RGP ameliorates LPS-induced injury in MLE-12 cells by activating the Nrf2/AMPK pathway. MLE-12 cells were treated
with different concentrations of RGP (0, 10, 20, 40, and 80 pg/mL), and the cell viability was evaluated by CCK-8 assay. (A)
MLE-12 cells were treated with different concentrations of RGP (0, 10, 20, and 40 pg/mL) in the presence of LPS (500 ng/mL) for
24 h, and the cell viability was evaluated by CCK-8 assay. (B) MLE-12 cells were treated with RGP (40 pg/mL) or co-treated with
ML385 or Compound C in the presence of LPS (500 ng/mL) for 24 h; then cells were collected and used for apoptosis, oxidative
stress, and ER stress detection. (C) Apoptosis rate was analyzed by FCM. (D) The intracellular ROS production was assessed by
DCF-DA fluorescence staining. (E) JC-1 staining results: green represents MMP monomers and red represents MMP aggregate.
(F) Representative histograms depicting MMP levels. Results are presented as mean ¥ SD (n = 3) obtained from three indepen-
dent experiments; *p < 0.05, **p < 0.01, and ***p < 0.001.
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of these findings in murine models of cecal ligation and
puncture (CLP). In addition, the complex pathophysi-
ology of ALI involves multiple signaling pathways, war-
ranting further research to achieve a comprehensive
understanding of the underlying mechanisms. Further
studies are required to delineate the regulatory role of
RGP on the Nrf2/AMPK signaling pathway.

Conclusions

The present study demonstrates that RGP, a key com-
ponent of RG, protects against sepsis-induced ALI
by modulating the Nrf2/AMPK pathway. These find-
ings highlight the potential of RGP as a functional food
ingredient with therapeutic applications in managing
sepsis-related complications, thereby contributing to the
growing field of nutraceuticals to enhance immune and
respiratory health through diet.
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