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Abstract

Detection of meat adulteration is a critical issue in food labeling procedures and a serious concern related to food 
fraud, authenticity, and religious beliefs. The current work detected and quantified adulteration of raw ground 
beef with pork, donkey, and dog meat based on fatty acid profiles using GC-MS/MS. The study design incorpo-
rated pork, donkey, or dog meat with beef meat; negative and positive controls were used for the different meat 
species. Results demonstrated several significant differences (p < 0.05) in fatty acid contents between mixed/adul-
terated meat and pure beef. In addition, higher total saturated fatty acid levels in ground beef (57.91%) compared 
to dog fat (46.44%), donkey (38.71%), and pork fat (lard) (40.23%). High total unsaturated fatty acids content was 
observed in donkey (61.92%), pork (59.77%), and dog (53.56%) fats compared to beef fat (42.09%). On the other 
hand, total unsaturated and monounsaturated fatty acids in beef meat were lower than in pork, donkey, and dog 
meat. Moreover, the highest trans-fatty acid content was found in pork compared to the other meat types. All 
incorporated samples correlated positively with pure ground beef concerning the fatty acid profiles. Therefore, 
alteration of the mixed beef fatty acid profiles was a potential indicator for adulteration since a marked decrease 
in total saturated fatty acid content and an increase in unsaturated fatty acids was observed in the substituted 
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Introduction

There is a growing demand among Egyptian consumers 
for reassurance of their food origin and content. 
Preventing fraudulent food adulteration practices is a 
critical and challenging issue confronting the Egyptian 
food industry (Yacoub and Sadek, 2017). Meat adultera-
tion is a growing issue for meat producers because most 
adulteration is concealed and unpredictable (e.g., horse 
meat) (Fengou et al., 2021a). Thus, meat and meat prod-
ucts should be investigated for safety and authenticity. 
They can be appealing targets for adulteration in various 
ways, including substituting highly commercially valued 
meat with less expensive meats, such as pork or offal, 
and adding proteins from multiple sources (Fengou et al., 
2021b). According to Islam and Judaism, religious con-
cerns prohibit eating pork, and any adulteration of meat 
products will affect consumption and violate religious 
beliefs. Muslims also do not eat horse and donkey meat, 
even if the contamination is unintentional and incidental 
(Bonne and Verbeke, 2008). 

Food fraud is a recurring threat that represents a major 
concern about food safety and quality for consumers. 
Food fraud hurts the global food industry, which estimates 
a cost of approximately 1%, or $10-15 billion annually; 
other estimations reach approximately $40 billion annu-
ally (FDA, 2021). Food fraud has received considerable 
attention recently, especially following the “Horsemeat 
Scandal” in Europe, and occurs despite strict legislation 
worldwide (Zhao et al., 2021). Many people doubt the 
purity and safety of the food they buy due to ongoing 
instances of food fraud. Consumers, governments, and 
the reputable food industry demand stricter controls on 
food quality, authenticity, traceability, and safety. 

In 2021, the world meat production measured in carcass 
weight was 355.5 million tons, with beef, poultry, and 
pork as the predominant meat categories (FAO, 2022). 
Egypt’s beef production in 2023 will reach 390,000 MT, up 
slightly (1.3 percent) or 5,000 MT above the 2022 estimate 
of 385,000 MT. However, Egypt’s domestic beef consump-
tion 660,000 in 2023 increased by less than one percent 
from the 2022 estimate, which was 655,000 or 5,000 MT. 
Accordingly, Egypt’s total beef imports in MY 2023 were 
270,000 MT, unchanged from 2021 (USDA, 2023).

Meatballs, sausages, hamburgers, ready-to-eat meals, and 
frozen meals are ground meat products currently on the 

market. The high demand for meat products, combined 
with unfair trade practices, makes ground meat highly 
vulnerable to adulteration, which is also mitigated by the 
fact that any adulteration can be easily masked (Fengou 
et al., 2021a). Some changes in muscles’ intact and mor-
phological properties occur when meat is ground, so sub-
stituting meat from less expensive meat species can be 
easily done (Leng et al., 2020). Unlabeled substitution of 
meat products occurs not only with less expensive meat 
but also with the fat of the banned species during pro-
duction (Mortas et al., 2022). Detection of food adulter-
ation aids in preventing risks caused by mixing beef with 
other animal species and determining the harmful effects 
of food adulteration on human health.

The food industry’s expansion and customer safety 
depend on developing quick and effective techniques to 
identify adulterated meat (Du et al., 2023). Most ana-
lytical methods developed for verifying meat species, 
labeling claims, and detecting adulteration primar-
ily employ protein, metabolite, or nucleic acid-based 
assays (Özlü et al., 2023). Furthermore, if fat rather 
than meat is substituted, it becomes more difficult to 
identify fraud involving beef meat. As a result, precise 
detection techniques must be used to assess meat fraud 
based on meat and fat substitution (Abdelrahman et al., 
2023). Techniques used to detect meat adulteration 
include enzyme-linked immunosorbent assay (ELISA) 
and molecular biology-based, spectroscopic, and chro-
matographic methods (Tian et  al., 2013). Polymerase 
chain reaction (PCR) as a DNA-based method (Chung, 
2017), restriction fragment length polymorphism analy-
sis (RFLP) (Chen et al., 2010), and DNA barcode mark-
ers (Fernandes et al., 2021) also have been used to detect 
meat fraud. Sengupta et al. (2021) reviewed immuno-
logical approaches such as ELISA to assess meat prod-
ucts. The most popular approach for determining meat 
product adulteration is PCR, whereas a method for 
determining meat products based on their protein com-
position is proteomic. However, these methods are not 
without limitations. It is time-consuming, expensive 
reagents, and meticulous sample preparation. In addi-
tion, the existence of food matrices and processing pro-
cedures that result in a low amount of extractable DNA 
makes it difficult to analyze highly processed food prod-
ucts using protein-based methods (Sarah et  al., 2016). 
Most of these approaches are protein or DNA-based 
methods rather than fat-based methods. Therefore, a 
sensitive, accurate, and reliable technique for meat and 

samples. We concluded that GC-MS/MS-based fatty acid profiling is a promising technique that can be used to 
detect meat adulteration.
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fat species identification is required to determine food 
adulteration accurately. Gas chromatography–mass 
spectrometry (GC/MS) was recently used to detect 
meat and fat fraud with more sensitivity and specificity 
(Pavlidis et al., 2019). GC is frequently used to assess a 
product’s purity or to identify the various ingredients in 
a mixture. In terms of fatty acid content, it can identify 
foods containing oil and fat. Fatty acid composition is 
also a particular sign for spotting adulteration (Mortas 
et al., 2022). For GC fatty acid analysis and the detection 
of pigs in processed meat products, the C20:2 marker 
was used (Sawaya et al., 1990). In a study by Sairin et al. 
(2019), lard adulteration was identified using GC-MS by 
categorizing fats from various animal sources. Heidari 
et  al. (2020) used gas GC-MS to identify the adultera-
tion of olive oil with other low-cost oils, such as lard. 
This method is based only on tracking changes in the oil 
profile’s fatty acid methyl esters (FAMEs) profile. The 
findings demonstrated that this technique can identify 
lard adulteration even when a small amount is present 
(5% w/w), with an error rate of less than 2% (Mortas 
et al., 2022).

Most of the previous research on meat adulteration was 
based primarily on identifying pork meat, and few stud-
ies focused on adulteration using donkey and dog meat. 
Therefore, this study aimed to (i) evaluate the fatty acid 
profiles of beef meat and adulterated meat contain-
ing meat from other animal species using GC-MS/MS,  
(ii) assess the correlation between fatty acid profiles of 
different species, and (iii) confirm the results of GC-MS/
MS using multiplex PCR.

Materials and Methods

Samples

Fresh beef meat was purchased from a local market in 
Cairo, Egypt. Pork meat samples were supplied from 
Central Al-Basateen slaughterhouse, Cairo. Dog and 
donkey meat samples were obtained from the animal 
Zoo, Giza. The samples were carefully wrapped in ster-
ile polyethylene bags and sent to the lab in an insulated 
box filled with ice. The meat was rinsed with cool, sterile, 
and deionized water after it arrived in the laboratory. The 
samples were kept hygienic at -18 ± 1 °C until used.

Preparation of meat mixtures

All meat samples (beef, pork, dog, and donkey) were 
ground separately using a Moulinex grinder (Model 
MC300, France). Beef meat composition consists of 
approximately 75% water, 19% protein, 2.5% fat, 1.2% 
carbohydrates, and 1.65% nitrogen compounds. It can be 

noticed that there is a substantial difference in the actual 
weight added (50%) for the adulterant between meat spe-
cies used. For each batch, 2.5% fat of pork, donkey, or 
dog was added depending on the type of adulterant used. 
The ground pork, donkey, or dog meat was mixed with 
ground beef in a ratio of 1:1. Each meat was mixed sep-
arately with ground beef to avoid cross-contamination. 
Pure ground beef was used as a negative control (−C), 
while pure pork, donkey, and dog meat were positive 
controls (+C). Negative and positive controls and other 
meat mixtures were kept at −18 ± 1 °C until used. All 
experiments were carried out in triplicates.

Fatty acid profiling using GC-MS/MS

Fatty acid methyl esters (FAMEs) of animal fats were 
carried out according to Ackman (2002). The fatty acid 
profiles were analyzed using GC-MS/MS (Agilent 8890-
7010B, Agilent Technologies, USA) supplemented with 
an ionized flame detector. An FFAP equipped the chro-
matograph (2.5 m × 0.30 μm film thickness and 0.32 
mm diameter) with a capillary column (HP88-Agilent 
Technologies, USA) covered by polyethylene glycol, was 
used. The column temperature was adjusted from 50 
°C to 240 °C (7 °C/min) and kept at 240 °C for 30 min. 
The temperatures used for injection and detection were 
250 and 260 °C, respectively. Gas flow rates were 30, 33, 
and 330 mL/min for H2, N2, and air, respectively. The 
column internal flow rate was 2 mL/min; all peaks from 
C8 to C22 were identified in a homologous series under 
the conditions used. Peaks were compared using stan-
dard chromatograms and relative retention times (RT) 
identified during the study. The peaks were measured 
using triangulation, and the relative proportions were 
used to determine the relationships between the partial 
areas to the total area. The percentages of all fat samples 
were transformed into a multivariate data set. Then, the 
data were standardized using Microsoft Excel software 
(2010). Principal component analysis (PCA) and K-mean 
cluster analysis were performed using Unscrambler 
software (X10).

PCR analysis

Experimentally adulterated ground beef samples and 
controls were evaluated by PCR using the selective 
primer for each species, as depicted in Table 1. Extraction 
and PCR cycles were applied according to the previous 
reports (Table 1), and the instructions provided by the 
EmeraldAmp® GT PCR Master Mix (Takara Bio Inc.) kit 
were followed. Subsequently, the PCR products were pro-
cessed via electrophoresis (Cleaver Scientific Ltd, Rugby, 
Warwickshire, UK) on an agarose gel, as described by 
Sambrook et al. (1989).
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Table 1.  Primer sequences for different examined species were used in PCR analysis.

Gene Primer sequence 5’-3’ Amplified product Reference

Porcine 12S Rrna-tRNA Val CTACATAAGAATATCACCCAC 290 bp (27)

ACATTGTGGGATCTTCTAGGT

Donkey (Equine) mtDNA CCC TCA AAC ATT TCA TCA TGA TGA AA 359 bp (28)

GCT CCT CAA AAG GAT ATT TGG CCT CA

Dog cytB GGAGTATGCTTGATTCTACAG 808 bp (29)

AGAAGTGGAATGAATGCC

Beef  cytochrome-b GCCATATACTCTCCTTGGTGACA 271 bp (30)

GTAGGCTTGGGAATAGTACGA

Statistical analyses

All measurements were carried out in triplicate, and the 
results are expressed as mean ± SD. The data were ana-
lyzed by ANOVA with the Duncan test using SPSS soft-
ware (version 16.0 for Windows, SPSS Inc., Chicago), with 
a significance level of P < 0.05. To determine the extent of 
correlation between different meat species depending on 
the fatty acid content, the correlation coefficient (R) was 
calculated using a significance level of P < 0.05. The anal-
yses were completed using Graph Pad Prism version 8 for 
Windows (San Diego, CA, USA). https://www.graphpad.
com/scientific-software/prism/

Results and Discussion

Meat product adulteration is widely reported worldwide 
and is a significant focus of the food economy, safety, 
and quality (Wang et al., 2020). It affects consumers 
with different religious beliefs, including Muslims. The 
global market has produced increasingly sophisticated, 
diverse halal products and contested halal regulations. 
Developing a precise technique to detect meat adulter-
ation with non-halal species is an emerging need. In this 
study, GC-MS/MS was used to screen the fatty acid pro-
files of different species (beef, donkey, dog, and pork). 

Donkey fat

Table 2 shows a comparative screening of the fatty acid 
profile of pure beef, donkey, and experimentally adul-
terated beef with 50% donkey meat. Mixing donkey 
meat with beef significantly increased (P < 0.05) oleic 
acid, trans-vaccenic acid, linoleic acid, and linolenic 
acid content. Donkey fat exhibited significantly higher 
levels of oleic acid (C18:1 n-9) (42.61%), trans-vacce-
nic acid (C18:1 n-11t) (2.55%), linoleic acid (C18:2 n-6) 
(8.39%), and linolenic acid (C18:3 n-3) (5.22%) com-
pared to beef fatty acids (35.43%, 0.9%, 1.01%, and 0.05%, 
respectively) and mixed donkey meat with beef (38.75%, 

1.94, 3.87%, 2.29%, respectively). Beef fat showed higher 
levels of stearic acid (C18:0) (27.53%) and pentadecanoic 
acid (C15:0) (0.7%) compared to donkey fat and don-
key meat mixed with beef (8.77%, 0.31%) and (23.33%, 
0.49%) for stearic and pentadecanoic acid, respectively. 
Moreover, fatty acids such as nonadecanoic acid (C19:0), 
elaidic acid (C18:1 n-9t), cis-vaccenic acid (C18:1 c6), 
10-octadecenoic acid (C19:1 n-9) and linoelaidic acid 
(C18:2 n-6t) were not detected in donkey fat. 

A higher level of total saturated fatty acids (SFA) was 
detected in ground beef (57.91%), while donkey fat 
showed higher total unsaturated fatty acids (USFA) at 
61.29%. Total SFA in ground beef was higher than those 
reported by (Correa et al., 2022), where the total SFA 
of beef meat was 47.04 while USFA was 52.96. Another 
study found that total SFA and USFA were 47.3% and 
49.5%, respectively (Torres et al., 2021). The variations 
in fatty acid profiles might be due to the genetic group, 
feeding period, or animal age. The fatty acid profiles 
are also influenced by dietary intake (Santos-Silva et al., 
2019), diet lipid supplementation (amount of lipid in the 
diet), lipid forms, basal diet composition, and feeding 
duration. Concerning donkey fat, Polidori et al. (2022) 
reported that fatty acids in the meat of donkeys slaugh-
tered at eight months of age contained 40.15% SFA and 
59.65% USFA. Despite higher SFA concentrations, rumi-
nant meat, such as beef, is considered a good source of 
many nutrients with multiple health benefits (Vahmani 
et al., 2020). However, beef that has undergone adulter-
ation using meat from different species is undesirable for 
consumers and violates various religious rules and con-
sumer acceptability. Fuseini et al. (2017) confirmed the 
adulteration of haram meat (such as pork) in UK-certified 
halal products. Many researchers have reported false 
claims on packaging referencing halal meat processed by 
uncertified sites. Donkey meat is one of the species used 
in adulterating beef. An EU-wide investigation prompted 
by the scandal found that 193 of 4,147 products marketed 
as beef contained undeclared horse meat in samples from 
22 countries (EC, 2018). From May 2018 to September 
2019 in Colombia, it was discovered that horse and 
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Table 2.  GC-MS/MS fatty acid profiles for beef, donkey, and beef were experimentally adulterated with donkey meat.

Fatty acid types Fatty acid relative (%) CF EF CEF

Saturated fatty acids Lauric acid (C12:0) 0.15±0.01b 0.26±0.01a 0.17±0.01b

Myristic acid (C14:0) 5.90±0.10a 4.70±0.10b 4.49±0.10b

Pentadecanoic acid (C15:0) 0.70±0.10a 0.31±0.01c 0.49±0.01b

Palmitic acid (C16:0) 21.87±1.1b 24.22±1.0a 20.45±1.2b

Margaric acid (C17:0) 1.57±0.08a 0.37±0.01c 1.06±0.01b

Stearic acid (C18:0) 27.53±1.1a 8.77±0.01c 23.33±0.8b

Nonadecanoic acid (C19:0) 0.09±0.01a 0.00±0.00c 0.06±0.01b

Arachidic acid (C20:0) 0.10±0.01b 0.08±0.01c 0.13±0.01a

Monounsaturated fatty acids Myristoleic acid (C14:1) 0.70±0.10a 0.50±0.11b 0.49±0.01b

Palmitoleic acid (C16:1) 0.25±0.01c 0.84±0.01a 0.44±0.01b

10-Heptadecenoic acid (C17:1) 0.38±0.01c 0.50±0.01a 0.44±0.01b

Elaidic acid (C18:1 n-9t) 2.79±0.07a 0.00±0.00c 1.22±0.02b

Cis-Vaccenic acid (C18:1 n-7) 0.29±0.01a 0.00±0.00c 0.07±0.01b

Oleic acid (C18:1 n-9) 35.43±0.7c 42.61±1.1a 38.75±1.2b

Trans-Vaccenic acid (C18:1 n-11t) 0.90±0.10c 2.55±0.03a 1.94±0.01b

10-Nonadecenoic acid (C19:1 n-9) 0.04±0.01a 0.00±0.00b 0.00±0.00b

11-Eicosenoic acid (C20: 1) 0.08±0.01c 0.52±0.01a 0.24±0.01b

Polyunsaturated fatty acids Linoleic acid (C18:2 n-6) 1.01±0.01c 8.39±0.20a 3.87±0.05b

Linoelaidic acid (C18:2 n-6t) 0.00±0.00 0.00±0.00 0.00±0.00

Linolenic acid (C18:3 n-3) 0.05±0.01c 5.22±0.24a 2.29±0.06b

7,10-Octadecadienoic acid (C18:3) 0.1±0.01a 0.06±0.01b 0.05±0.01b

8,11-Eicosadienoic acid (C20:3) 0.06±0.02b 0.11±0.01a 0.05±0.01b

Omega 3 0.05 5.22 2.29

Omega 6 1.01 8.39 3.87

Total saturated fatty acids 57.91 38.71 50.18

Total monounsaturated fatty acids 40.87 47.51 43.56

Total polyunsaturated fatty acids 1.22 13.78 6.26

Total unsaturated fatty acids 42.09 61.29 49.82

Trans fatty acids 3.69 2.55 3.16

Results represent the average of  three determinations ± SD; values in the same row with different letters are significantly different (P < 0.05).  
CF: ground beef  (cattle), EF: donkey meat (equine), and CEF: beef  experimentally adulterated with 50% donkey meat.

donkey meat were sold for school meals as beef on a large 
scale. Moreover, Di Giuseppe et al. (2015) detected horse 
meat in beef burgers in the EU. So, GC-MS/MS-based 
fatty acid profiling is a promising technique that can be 
used to detect meat adulteration.

A correlation between beef and donkey fatty acid profiles 
with (R2) values of 0.8648 is seen in Figure 1, resulting 
from differences in fatty acids in both species. The cor-
relation increased when fatty acid profiles from pure beef 
were compared to beef adulterated with donkey meat 
(R2 = 0.9852). These findings agree with those reported 
by Li et al. (2021).

The clustered heatmap of fatty acid profiles for beef, don-
key, and a mixture of them is illustrated in Figure 2. Small 

box plots indicate the individual distribution of fatty 
acids in the clusters. The clustering heatmap revealed an 
understandable visual representation of all the data sets. 
It highlighted the variations in concentration levels of all 
measured fatty acid profiles in each species where SFA 
and monounsaturated fatty acids were observed in the 
samples. 

Dog fat

Another type of meat adulteration utilizes dog meat. 
Results in Table 3 show the GC-MS/MS results for dog 
meat and beef experimentally adulterated at 50% with 
dog meat. Significant differences in fatty acid contents 
(P < 0.05) were noticed between the investigated samples. 
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Figure 1.  Correlation analysis of fatty acids profile of beef, donkey meat, and beef experimentally adulterated with donkey.
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Figure 2.  Clustered heat map based on fatty acids of pure beef, donkey meat, and beef experimentally adulterated with donkey 
meat. The concentration values are represented by each colored cell on the map, with varied averages in the rows and various 
treatment sets in the columns. On the gradation scale, dark red is the highest value, and blue is the lowest.

Mixing dog meat with beef exhibited a higher level 
of oleic acid (C18:1 n-9) (44.67%) than beef (35.43%), 
which was reflected in the level of total USFA and conse-
quently, higher total USFA (49.15%) for dog meat mixed 
with beef meat compared to beef (42.09%). On the other 
hand, mixing dog meat with beef exhibited lower levels of 
myristic (C14:0), myristoleic (C14:1), and 10-heptadeca-
noic (C17:1) acids compared to beef. Elaidic acid (C18:1 
n-9t) was not detected in dog fat. GC-MS was utilized 
by Guntarti (2018) to verify dog fat. According to the 
study’s findings, dog fat contains nine different types of 
fatty acids: oleate (44.33 ± 5.22%), stearic (14.71 ± 0.32%), 
arachidonic (1.29 ± 0.11%), palmitoleate (4.60 ± 0.07%), 
palmitate (12.80 ± 2.90%), margarate (0.13 ± 0.09%), and 
myristate (4.33 ± 0.30%). Dogs had a 50.22% overall fatty 

acid content and a 33.03% saturated fatty acid content. 
These results are somewhat similar to our findings.

A close relationship was found between fatty acids in beef 
(R2 = 0.9655). Mixed beef and dog meat (R2 = 0.9681), 
confirmed by correlation analysis, as seen in Figure 3. 
The low price of dog meat is considered a significant eco-
nomic reason it is one of the adulterants used in the meat 
industry. Many countries consume dog meat, including 
South Korea, Vietnam, and China (Bartlett and Clifton, 
2003). However, different religions, including Islam, pro-
hibit mixing dog meat with other meat products. 

The clustered heatmap used to evaluate the differences in 
fatty acids profile in the different samples in this study is 
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Table 3.  GC-MS/MS fatty acid profiles for beef, dog meat, and beef were experimentally adulterated with dog meat.

Fatty acid types Fatty acid relative (%) CF DF CDF

Saturated fatty acids Lauric acid (C12:0) 0.15±0.01b 0.10±0.01c 0.36±0.01a

Myristic acid (C14:0) 5.90±0.01a 3.78±0.01b 2.72±0.07c

Pentadecanoic acid (C15:0) 0.70±0.10a 0.83±0.01a 0.19±0.01b

Palmitic acid (C16:0) 21.87±1.1a 17.34±0.3b 20.64±0.2a

Margaric acid (C17:0) 1.57±0.08b 2.06±0.08a 0.44±0.01c

Stearic acid (C18:0) 27.53±1.1a 26.43±1.0a 15.79±0.4b

Nonadecanoic acid (C19:0) 0.09±0.01b 0.14±0.01a 0.00±0.00c

Arachidic acid (C20:0) 0.10±0.01a 0.17±0.01b 0.09±0.01a

Monounsaturated fatty acids Myristoleic acid (C14:1) 0.70±0.10a 0.34±0.01b 0.04±0.01c

Palmitoleic acid (C16:1) 0.25±0.10c 0.37±0.10b 0.73±0.05a

10-Heptadecenoic acid (C17:1) 0.38±0.01b 0.84±0.10a 0.19±0.01c

Elaidic acid (C18:1 n-9t) 2.79±0.07a 0.00±0.00c 0.39±0.04b

Cis-Vaccenic acid (C18:1 n-7) 0.29±0.01b 3.18±0.07a 0.00±0.00c

Oleic acid (C18:1 n-9) 35.43±0.7c 40.88±1.1b 44.67±0.5a

Trans-Vaccenic acid (C18:1 n-11t) 0.90±0.10c 1.81±0.09b 3.61±0.51a

10-Nonadecenoic acid (C19:1 n-9) 0.04±0.01b 0.11±0.01a 0.00±0.00c

11-Eicosenoic acid (C20:1) 0.08±0.01c 0.18±0.01b 0.66±0.03a

Polyunsaturated fatty acids Linoleic acid (C18:2 n-6) 1.01±0.01c 1.33±0.05b 9.15±0.80a

Linoelaidic acid (C18:2 n-6t) 0.00±0.00 0.00±0.00 0.00±0.00

Linolenic acid (C18:3 n-3) 0.05±0.01a 0.07±0.01a 0.06±0.02a

7,10-Octadecadienoic acid (C18:3) 0.1±0.01a 0.05±0.01b 0.12±0.01a

8,11-Eicosadienoic acid (C20:3) 0.06±0.01b 0.01±0.01c 0.15±0.03a

Omega 3 0.05 0.07 0.06

Omega 6 1.01 1.42 1.33

Total saturated fatty acids 57.91 46.44 50.85

Total monounsaturated fatty acids 40.87 51.94 47.69

Total polyunsaturated fatty acids 1.22 1.62 1.46

Total unsaturated fatty acids 42.09 53.56 49.15

Trans fatty acids 3.69 0.02 1.81

Results represent the average of  three determinations ± SD; values in the same row with different letters are significantly different (P < 0.05).  
CF: ground beef  (cattle), DF: dog meat, and CDF: experimentally adulterated beef  with 50% dog meat.
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Figure 3.  Correlation analysis of fatty acids profile of beef, dog meat, and beef experimentally adulterated with dog.
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Industry. Sairin et al. (2019) identified lard adulteration 
using GC-MS by categorizing fats from various animal 
sources. A study by Zhao et al. (2021) detected adulter-
ation of 27.8% of 79 beef products with pork or chicken 
to various degrees. Another study by Wang et al. (2019) 
reported adulteration of buffalo meat products in China 
at 35.3% with pork, beef, or duck. However, the presence 
of lard or pork derivatives is prohibited for Muslims and 
Jews (Witjaksono et al., 2017). The fatty acid profile for 
lard has only subtle differences compared to other ani-
mal fats, creating an obstacle to its detection in other 
meat products (Harun et al., 2019). Lard is primarily 
composed of triglycerides distributed between saturated 
and unsaturated fatty acids. Chromatographic-based 
methods are widely used to detect food adulteration due 
to their ability to detect even minute amounts of adul-
terants in meat. Concerning pork fat, Ma and Sun (2020) 
found that SFA in pork was 32 g/100 g and USFA was 
65 g/100 g. However, fatty acid profiles differ from one 
researcher to another. This might be due to the reagents 
used, sample preparation, and the combined effects that 
significantly affect the detected quantities of SFA, mono-
unsaturated fatty acids (MUFA), and polyunsaturated 
fatty acids (PUFA) in different meat samples.

In examining the correlation between beef and pork, beef 
and experimentally adulterated beef were positive with 
R2 =0.8683 and R2 = 0.9847, respectively (Figure 5). Gas 
chromatography has been used previously to quantify 
fatty acids in meat products accurately. Moreover, rapid 

illustrated in Figure 4. Oleic, stearic, and palmitic acids 
represent the most significant clusters of total fatty acids 
examined in the samples. 

Pork fat (lard)

Pork fat (lard) is the most common adulterant added to 
meat products with economic and religious restrictions 
as it is the cheapest fat available in the food industry 
to be easily incorporated (Sim et al., 2018). Results in 
Table  4 reveal the fatty acid profile of pork (lard) com-
pared with beef and beef experimentally adulterated with 
lard. Nonadecanoic acid (C19:0), an SFA, cis-vaccenic 
acid (C18:1 c6), and 10-octadecenoic acid (C19:1), which 
are unsaturated fatty acids (USFA), were not detected 
in pork. However, oleic acid (C18:1 n-9) (41.06%), 
trans-vaccenic acid (C18:1 n-11t) (2.11%), 11-Eicosenoic 
acid (C20:1) (0.29%) and linoleic acid (C18:2 n-6) (3.87%) 
were detected in pork meat mixed with beef at higher 
levels than in beef (35.43%, 0.9%, 0.08% and 1.01%, 
respectively). On the other hand, mixing pork meat with 
beef exhibited lower levels of myristic (C14:0) (3.6%), 
margaric (C17:0) (0.84%), and stearic (C18:0) (24.28%) 
acids compared to beef (CF) (5.9%, 1.57% and 27.53% 
for myristic, margaric and stearic acid, respectively). 
These results are reflected in the higher total USFA in 
pork meat mixed with beef (49.07%) compared with beef 
(42.09%), and the total SFA was low in pork. Pork is con-
sidered one of the most common adulterants in the meat 
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Figure 4.  Clustered heat map based on fatty acids of pure beef, dog meat, and beef experimentally adulterated with dog meat. 
The concentration values are represented by each colored cell on the map, with varied averages in the rows and various treat-
ment sets in the columns. On the gradation scale, dark red is the highest value, and blue is the lowest.
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Table 4.  GC-MS/MS fatty acid profiles for beef, pork (lard), and beef experimentally adulterated with pork. 

Fatty acid types Fatty acid relative (%) CF PF CPF

Saturated fatty acids Lauric acid (C12:0) 0.15±0.01c 0.36±0.02a 0.21±0.01b

Myristic acid (C14:0) 5.90±0.10a 2.72±0.10c 3.60±0.10b

Pentadecanoic acid (C15:0) 0.70±0.10a 0.19±0.02c 0.33±0.02b

Palmitic acid (C16:0) 21.87±1.1a 20.64±0.46a 21.54±2.1a

Margaric acid (C17:0) 1.57±0.08a 0.44±0.05c 0.84±0.03b

Stearic acid (C18:0) 27.53±1.2a 15.79±0.61c 24.28±1.11b

Nonadecanoic acid (C19:0) 0.09±0.01a 0.00±0.00c 0.05±0.31b

Arachidic acid (C20:0) 0.10±0.01a 0.09±0.01a 0.09±0.02a

Monounsaturated fatty acids Myristoleic acid (C14:1) 0.70±0.10a 0.04±0.01c 0.19±0.01b

Palmitoleic acid (C16:1) 0.25±0.01c 0.73±0.05a 0.33±0.02b

10-Heptadecenoic acid (C17:1) 0.38±0.01a 0.19±0.05b 0.22±0.01b

Elaidic acid (C18:1 n-9t) 2.79±0.07a 0.39±0.03b 0.10±0.02c

Cis-Vaccenic acid (C18:1 n-7) 0.29±0.01b 0.00±0.00c 0.78±0.05a

Oleic acid (C18:1 n-9) 35.43±0.7c 44.67±1.4a 41.06±0.9b

Trans-Vaccenic acid (C18:1 n-11t) 0.90±0.10c 3.61±0.11a 2.11±0.02b

10-Nonadecenoic acid (C19:1 n-9) 0.04±0.01a 0.00±0.00b 0.00±0.00b

11-Eicosenoic acid (C20:1) 0.08±0.01c 0.66±0.04a 0.29±0.01b

Polyunsaturated fatty acids Linoleic acid (C18:2 n-6) 1.01±0.01c 9.15±0.15a 3.87±0.04b

Linoelaidic acid (C18:2 n-6t) 0.00±0.00 0.00±0.00 0.00±0.00

Linolenic acid (C18:3 n-3) 0.05±0.01a 0.06±0.02a 0.02±0.00b

7,10-Octadecadienoic acid (C18:3) 0.10±0.01a 0.12±0.01a 0.05±0.00b

8,11-Eicosadienoic acid (C20: 3) 0.06±0.01b 0.15±0.02a 0.05±0.00b

Omega 3 0.05 0.06 0.02

Omega 6 1.01 19.15 3.87

Total saturated fatty acids 57.91 40.23 50.94

Total monounsaturated fatty acids 40.87 50.29 45.08

Total polyunsaturated fatty acids 1.22 9.48 3.99

Total unsaturated fatty acids 42.09 59.77 49.07

Trans fatty acids 3.69 4 2.11

Results represent the average of  three determinations ± SD; values in the same row with different letters are significantly different (P < 0.05). CF: 
ground beef  (cattle), PF: pork, and CPF: beef  experimentally adulterated with 50% pork.

LC-MS/MS was previously used by Zhang et al. (2022) to 
detect adulteration of meat and screen peptides associ-
ated with seven species (pig, cattle, sheep, deer, chicken, 
duck, and turkey), and three samples out of 20 processed 
meat products were adulterated. These observations 
agree with those reported by Li et al. (2021). The positive 
correlation in this study between beef and other species 
(pork, dog, and donkey meat) or between beef and that 
adulterated with other species confirmed the ability of 
GC-MS/MS to detect meat product adulteration even 
when the meat is only adulterated with fat or after pro-
tein denaturation that occurs with processing.

The clustered heatmap used to evaluate the differences in 
fatty acid profiles in beef, pork, and the mixture of beef 

and pork is illustrated in Figure 6. SFAs (stearic, palmitic, 
and myristic acids) and MUFA (oleic acid) represent the 
most significant clusters of the total fatty acids observed 
in the examined samples.

PCR for confirmation of examined meat

The results obtained with GC-MS/MS were confirmed 
by evaluating the samples using PCR. PCR is an accu-
rate, specific, DNA-based technique. PCR techniques 
have an advantage in different species that can be 
detected and evaluated in one run (Denyingyhot et al., 
2022; Özlü et al., 2023). Figure 7 shows the PCR results 
confirming the results from the different pure meat 
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Figure 5.  Correlation analysis of fatty acids profile of beef, pork fat, and beef experimentally adulterated with pork fat.
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in the columns. On the gradation scale, dark red is the highest value, and blue is the lowest.

species and beef adulterated with 50% of each of the 
different meats (donkey, dog, and pork). PCR analy-
ses were carried out using separate reactions to con-
firm the specific detection for each species. Mixtures 
(50%) of beef with donkey meat (lane 1), beef with dog 
meat (lane 2), and beef with pork (lane 3) gave posi-
tive results that were specific for donkey, dog, and pig 
genes, respectively. These samples also all gave positive 
results for beef (beef cytochrome-b primer). Based on 
the observed results, it is critical to develop primers 
that can be used for precise detection for each animal 
species. This will allow investigators to employ these 

components in a matrix-based technique to detect any 
adulteration that may take place during food process-
ing. Özlü et al. (2023) used a real-time PCR technique 
as a sensitive and specific method to detect the various 
meat species in meat products that were sold in the 
eastern Turkish provinces. These meat products were 
promoted as 100% beef. The real-time PCR technique 
investigated six animal species’ DNA (chicken, turkey, 
pork, horse, donkey, and camel). Out of the 100 samples 
of Turkish fermented sausage (sucuk), salami, and sau-
sage, the analysis found no evidence of horse, donkey, 
camel, or pig meat.
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